Numerical analysis of magneto-radiated annular fin natural-convective heat transfer performance using advanced ternary nanofluid considering shape factors with heating source

dc.authoridAlBaidani, Mashael M/0000-0002-6190-8683
dc.authoridMishra, Dr.Nidhish Kumar/0000-0003-4502-261X
dc.authoridALAM, MOHAMMAD MAHTAB/0000-0003-3966-6988
dc.contributor.authorAdnan
dc.contributor.authorAlBaidani, Mashael M.
dc.contributor.authorMishra, Nidhish Kumar
dc.contributor.authorAlam, Mohammad Mahtab
dc.contributor.authorEldin, Sayed M.
dc.contributor.authorAL-Zahrani, Asla A.
dc.contributor.authorAkgul, Ali
dc.date.accessioned2024-12-24T19:27:00Z
dc.date.available2024-12-24T19:27:00Z
dc.date.issued2023
dc.departmentSiirt Üniversitesi
dc.description.abstractApplications: The fins performance under natural convection is essential to make it more functional for large scale applications more specifically in thermal engineering. For this, it is important to introduce new techniques to enhance the fins performance instead of traditional way. Thus, this study introduces a new way to make the fin more efficient using ternary nanomaterial under nanoparticles shape factor. The annular fin significantly contributes in electronics to exhaust the hot air, injector pumps and applied thermal engineering.Purpose: and Methodology: This work focuses on the fin energy model using shape factors. Therefore, the ternary nanofluid, natural convection, thermal radiation and magnetic field used to develop the model. Then, the RKF-45 implemented to investigate physical results.Core findings: Keen analysis of the physical results reveal that the coefficient of thermal conductivity ranging from 0.0% < alpha 1 < 3.0% and natural convection have major role in the fins energy performance. Induction of magnetic field and thermal radiation Rd are reliable for the fin cooling and, heating source Q1 = 0.2,0.4,0.6,0.8 promote the fin energy capability in the existence of (Al2O3-CuO-Cu) ternary nanomaterial with concentration factor up to 2%. On the comparative basis, ternary nanomaterial makes the fin more efficient than hybrid nanomaterial.
dc.description.sponsorshipDeanship of Scientific Research at King Khalid University [RGP.1/125/43]
dc.description.sponsorshipThe authors from King Khalid University extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through the Research Groups Program under Grant No. RGP.1/125/43.
dc.identifier.doi10.1016/j.csite.2023.102825
dc.identifier.issn2214-157X
dc.identifier.scopus2-s2.0-85149400772
dc.identifier.scopusqualityQ1
dc.identifier.urihttps://doi.org/10.1016/j.csite.2023.102825
dc.identifier.urihttps://hdl.handle.net/20.500.12604/6447
dc.identifier.volume44
dc.identifier.wosWOS:000953117400001
dc.identifier.wosqualityQ1
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherElsevier
dc.relation.ispartofCase Studies in Thermal Engineering
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/openAccess
dc.snmzKA_20241222
dc.subjectEnergy equation
dc.subjectNatural convection
dc.subjectAnnular fin
dc.subjectTernary nanofluid
dc.subjectHeat generation
dc.subjectabsorption
dc.subjectMagnetic field
dc.titleNumerical analysis of magneto-radiated annular fin natural-convective heat transfer performance using advanced ternary nanofluid considering shape factors with heating source
dc.typeArticle

Dosyalar