A novel numerical method for solving the Caputo-Fabrizio fractional differential equation

dc.contributor.authorArshad, Sadia
dc.contributor.authorSaleem, Iram
dc.contributor.authorAkgul, Ali
dc.contributor.authorHuang, Jianfei
dc.contributor.authorTang, Yifa
dc.contributor.authorEldin, Sayed M.
dc.date.accessioned2024-12-24T19:34:03Z
dc.date.available2024-12-24T19:34:03Z
dc.date.issued2023
dc.departmentSiirt Üniversitesi
dc.description.abstractIn this paper, a unique and novel numerical approach-the fractional-order Caputo-Fabrizio derivative in the Caputo sense-is developed for the solution of fractional differential equations with a non-singular kernel. After converting the differential equation into its corresponding fractional integral equation, we used Simpson's 1/3 rule to estimate the fractional integral equation. A thorough study is then conducted to determine the convergence and stability of the suggested method. We undertake numerical experiments to corroborate our theoretical findings.
dc.identifier.doi10.3934/math.2023481
dc.identifier.endpage9556
dc.identifier.issn2473-6988
dc.identifier.issue4
dc.identifier.scopus2-s2.0-85148462252
dc.identifier.scopusqualityQ1
dc.identifier.startpage9535
dc.identifier.urihttps://doi.org/10.3934/math.2023481
dc.identifier.urihttps://hdl.handle.net/20.500.12604/8406
dc.identifier.volume8
dc.identifier.wosWOS:000995999000003
dc.identifier.wosqualityQ1
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherAmer Inst Mathematical Sciences-Aims
dc.relation.ispartofAims Mathematics
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/openAccess
dc.snmzKA_20241222
dc.subjectfractional differential equation
dc.subjectnon-singular operator
dc.subjectnumerical approximation
dc.subjectstability analysis
dc.subjectconvergence analysis
dc.titleA novel numerical method for solving the Caputo-Fabrizio fractional differential equation
dc.typeArticle

Dosyalar