Flow optimization in a microchannel with vortex generators using genetic algorithm

dc.authoridDalkilic, Ahmet Selim/0000-0002-5743-3937
dc.authoridOKBAZ, ABDULKERIM/0000-0002-8866-6047
dc.authoridKAYACI, NURULLAH/0000-0002-8843-8191
dc.contributor.authorGonul, Alisan
dc.contributor.authorOkbaz, Abdulkerim
dc.contributor.authorKayaci, Nurullah
dc.contributor.authorDalkilic, Ahmet Selim
dc.date.accessioned2024-12-24T19:25:20Z
dc.date.available2024-12-24T19:25:20Z
dc.date.issued2022
dc.departmentSiirt Üniversitesi
dc.description.abstractIn this study, delta winglet-type vortex generators, widely used in conventional macro channels and proven to be effective, are used in microchannels to increase their heat transfer capacities. The effects of vortex generators on heat transfer and pressure loss characteristics are studied numerically for different angles of attack, vortex generator arrangement type, the transverse and longitudinal distance between vortex generators, vortex generator length and height, and different Reynolds numbers. The thermal and hydraulic characteristics are presented as the Nusselt number, the friction factor, and the performance evaluation criteria number (PEC) that takes into account the heat transfer enhancement and the corresponding increase in pressure loss. The variation of Nu/Nu0, f/f0, and PEC are found to be in the range of 1.03-1.87, 1.04-1.8, and 0.92-1.62, respectively. A multi-objective optimization study are performed with the response surface methodology analysis to see how different parameters affect heat transfer and pressure loss and to determine the most optimum design. Besides, local sensitivity analysis study is carried out through the RSM, and water inlet velocity for heat transfer enhancement is found to be the most effective parameter. Among the geometric parameters, vortex generator height is determined as the most effective factor. Finally, practical Nusselt number and friction factor correlations taking many parameters into account are proposed to be able to compare the results of other researchers, and for engineers designing microchannel cooling systems.
dc.identifier.doi10.1016/j.applthermaleng.2021.117738
dc.identifier.issn1359-4311
dc.identifier.issn1873-5606
dc.identifier.scopus2-s2.0-85118854784
dc.identifier.scopusqualityQ1
dc.identifier.urihttps://doi.org/10.1016/j.applthermaleng.2021.117738
dc.identifier.urihttps://hdl.handle.net/20.500.12604/6356
dc.identifier.volume201
dc.identifier.wosWOS:000720647600001
dc.identifier.wosqualityQ1
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherPergamon-Elsevier Science Ltd
dc.relation.ispartofApplied Thermal Engineering
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_20241222
dc.subjectMicrochannel
dc.subjectVortex generator
dc.subjectHeat transfer enhancement
dc.subjectGenetic algorithm
dc.subjectMulti-objective optimization
dc.titleFlow optimization in a microchannel with vortex generators using genetic algorithm
dc.typeArticle

Dosyalar