Some Geometric Properties of Generalized Difference Cesaro Sequence Spaces
dc.contributor.author | Sengul, Hacer | |
dc.contributor.author | Et, Mikail | |
dc.date.accessioned | 2024-12-24T19:33:23Z | |
dc.date.available | 2024-12-24T19:33:23Z | |
dc.date.issued | 2017 | |
dc.department | Siirt Üniversitesi | |
dc.description.abstract | In this paper, we define the generalized Cesaro difference sequence space C-(p) (Delta(m)) and consider it equipped with the Luxemburg norm under which it is a Banach space and we show that in the space C-(p) (Delta(m)) every weakly convergent sequence on the unit sphere converges is the norm, where p - (p(n)) is a bounded sequence of positive real numbers with p(n) > 1 for all n is an element of N. | |
dc.identifier.endpage | 474 | |
dc.identifier.issn | 1686-0209 | |
dc.identifier.issue | 2 | |
dc.identifier.startpage | 465 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12604/8121 | |
dc.identifier.volume | 15 | |
dc.identifier.wos | WOS:000422724200012 | |
dc.identifier.wosquality | N/A | |
dc.indekslendigikaynak | Web of Science | |
dc.language.iso | en | |
dc.publisher | Chiang Mai Univ, Fac Science | |
dc.relation.ispartof | Thai Journal of Mathematics | |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | |
dc.rights | info:eu-repo/semantics/closedAccess | |
dc.snmz | KA_20241222 | |
dc.subject | Cesaro difference sequence space | |
dc.subject | Luxemburg norm | |
dc.subject | extreme point | |
dc.subject | convex modular | |
dc.subject | property (H) | |
dc.title | Some Geometric Properties of Generalized Difference Cesaro Sequence Spaces | |
dc.type | Article |