Some Geometric Properties of Generalized Difference Cesaro Sequence Spaces

dc.contributor.authorSengul, Hacer
dc.contributor.authorEt, Mikail
dc.date.accessioned2024-12-24T19:33:23Z
dc.date.available2024-12-24T19:33:23Z
dc.date.issued2017
dc.departmentSiirt Üniversitesi
dc.description.abstractIn this paper, we define the generalized Cesaro difference sequence space C-(p) (Delta(m)) and consider it equipped with the Luxemburg norm under which it is a Banach space and we show that in the space C-(p) (Delta(m)) every weakly convergent sequence on the unit sphere converges is the norm, where p - (p(n)) is a bounded sequence of positive real numbers with p(n) > 1 for all n is an element of N.
dc.identifier.endpage474
dc.identifier.issn1686-0209
dc.identifier.issue2
dc.identifier.startpage465
dc.identifier.urihttps://hdl.handle.net/20.500.12604/8121
dc.identifier.volume15
dc.identifier.wosWOS:000422724200012
dc.identifier.wosqualityN/A
dc.indekslendigikaynakWeb of Science
dc.language.isoen
dc.publisherChiang Mai Univ, Fac Science
dc.relation.ispartofThai Journal of Mathematics
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_20241222
dc.subjectCesaro difference sequence space
dc.subjectLuxemburg norm
dc.subjectextreme point
dc.subjectconvex modular
dc.subjectproperty (H)
dc.titleSome Geometric Properties of Generalized Difference Cesaro Sequence Spaces
dc.typeArticle

Dosyalar