Some Geometric Properties of Generalized Difference Cesaro Sequence Spaces

[ X ]

Tarih

2017

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Chiang Mai Univ, Fac Science

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

In this paper, we define the generalized Cesaro difference sequence space C-(p) (Delta(m)) and consider it equipped with the Luxemburg norm under which it is a Banach space and we show that in the space C-(p) (Delta(m)) every weakly convergent sequence on the unit sphere converges is the norm, where p - (p(n)) is a bounded sequence of positive real numbers with p(n) > 1 for all n is an element of N.

Açıklama

Anahtar Kelimeler

Cesaro difference sequence space, Luxemburg norm, extreme point, convex modular, property (H)

Kaynak

Thai Journal of Mathematics

WoS Q Değeri

N/A

Scopus Q Değeri

Cilt

15

Sayı

2

Künye