Some Geometric Properties of Generalized Difference Cesaro Sequence Spaces
[ X ]
Tarih
2017
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Chiang Mai Univ, Fac Science
Erişim Hakkı
info:eu-repo/semantics/closedAccess
Özet
In this paper, we define the generalized Cesaro difference sequence space C-(p) (Delta(m)) and consider it equipped with the Luxemburg norm under which it is a Banach space and we show that in the space C-(p) (Delta(m)) every weakly convergent sequence on the unit sphere converges is the norm, where p - (p(n)) is a bounded sequence of positive real numbers with p(n) > 1 for all n is an element of N.
Açıklama
Anahtar Kelimeler
Cesaro difference sequence space, Luxemburg norm, extreme point, convex modular, property (H)
Kaynak
Thai Journal of Mathematics
WoS Q Değeri
N/A
Scopus Q Değeri
Cilt
15
Sayı
2