Analytical Approximate Solutions of (n+1)-Dimensional Fractal Heat-Like and Wave-Like Equations

[ X ]

Tarih

2017

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Mdpi

Erişim Hakkı

info:eu-repo/semantics/openAccess

Özet

In this paper, we propose a new type (n + 1)-dimensional reduced differential transform method (RDTM) based on a local fractional derivative (LFD) to solve (n + 1)-dimensional local fractional partial differential equations (PDEs) in Cantor sets. The presented method is named the (n + 1)-dimensional local fractional reduced differential transform method (LFRDTM). First the theories, their proofs and also some basic properties of this procedure are given. To understand the introduced method clearly, we apply it on the (n + 1)-dimensional fractal heat-like equations (HLEs) and wave-like equations (WLEs). The applications show that this new technique is efficient, simply applicable and has powerful effects in (n + 1)-dimensional local fractional problems.

Açıklama

Anahtar Kelimeler

reduced differential transform method, heat like equation, wave like equation, fractional partial differential equations, local fractional derivative

Kaynak

Entropy

WoS Q Değeri

Q2

Scopus Q Değeri

Q1

Cilt

19

Sayı

7

Künye