RGB-Angle-Wheel: A new data augmentation method for deep learning models

dc.authoridOZDEMIR, Cuneyt/0000-0002-9252-5888
dc.contributor.authorOzdemir, Cuneyt
dc.contributor.authorDogan, Yahya
dc.contributor.authorKaya, Yilmaz
dc.date.accessioned2024-12-24T19:27:28Z
dc.date.available2024-12-24T19:27:28Z
dc.date.issued2024
dc.departmentSiirt Üniversitesi
dc.description.abstractDeep learning models often rely on a diverse and well -augmented dataset for optimal performance. In this context, the methods of data augmentation are pivotal in boosting the models' ability to generalize. In this paper, we introduce a novel data augmentation method, which we call RGB-Angle-Wheel, to improve the performance of deep learning models on RGB format images. This method involves rotating each color channel at specific angles to generate new training data that is distinct from the original dataset but shares similar properties. Experimental results on the CIFAR-10, CIFAR-100,and COCO datasets have validated the efficacy of the proposed method for enhancing model performance. Specifically, certain transformations in the red (R) and blue (B) channels improve model accuracy significantly, whereas the effect on the green (G) channel remains limited. These results indicate that the careful selection of transformation parameters plays a critical role in enhancing model performance. The findings of the study indicate that the proposed method can be utilized specifically for image processing, image classification, object detection, and other deep learning applications. Experiments demonstrate that the proposed method improves the model's efficacy and generalizability.
dc.identifier.doi10.1016/j.knosys.2024.111615
dc.identifier.issn0950-7051
dc.identifier.issn1872-7409
dc.identifier.scopus2-s2.0-85187113999
dc.identifier.scopusqualityQ1
dc.identifier.urihttps://doi.org/10.1016/j.knosys.2024.111615
dc.identifier.urihttps://hdl.handle.net/20.500.12604/6648
dc.identifier.volume291
dc.identifier.wosWOS:001205186800001
dc.identifier.wosqualityN/A
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherElsevier
dc.relation.ispartofKnowledge-Based Systems
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_20241222
dc.subjectData augmentation
dc.subjectDeep learning
dc.subjectConvolutional neural network
dc.subjectRGB-Angle-Wheel
dc.titleRGB-Angle-Wheel: A new data augmentation method for deep learning models
dc.typeArticle

Files