The Propagating Exact Solitary Waves Formation of Generalized Calogero-Bogoyavlenskii-Schiff Equation with Robust Computational Approaches

dc.authoridTurcu, Antoniu Claudiu/0000-0003-2130-8437
dc.authoridBakar, Muhammad Abu/0000-0003-3903-098X
dc.authoridSallah, Mohammed/0000-0003-2063-8979
dc.authoridAli Faridi, Waqas/0000-0003-0713-5365
dc.contributor.authorAl Alwan, Basem
dc.contributor.authorAbu Bakar, Muhammad
dc.contributor.authorFaridi, Waqas Ali
dc.contributor.authorTurcu, Antoniu-Claudiu
dc.contributor.authorAkgul, Ali
dc.contributor.authorSallah, Mohammed
dc.date.accessioned2024-12-24T19:33:36Z
dc.date.available2024-12-24T19:33:36Z
dc.date.issued2023
dc.departmentSiirt Üniversitesi
dc.description.abstractThe generalized Calogero-Bogoyavlenskii-Schiff equation (GCBSE) is examined and analyzed in this paper. It has several applications in plasma physics and soliton theory, where it forecasts the soliton wave propagation profiles. In order to obtain the analytically exact solitons, the model under consideration is a nonlinear partial differential equation that is turned into an ordinary differential equation by using the next traveling wave transformation. The new extended direct algebraic technique and the modified auxiliary equation method are applied to the generalized Calogero-Bogoyavlenskii-Schiff equation to get new solitary wave profiles. As a result, novel and generalized analytical wave solutions are acquired in which singular solutions, mixed singular solutions, mixed complex solitary shock solutions, mixed shock singular solutions, mixed periodic solutions, mixed trigonometric solutions, mixed hyperbolic solutions, and periodic solutions are included with numerous soliton families. The propagation of the acquired soliton solution is graphically presented in contour, two- and three-dimensional visualization by selecting appropriate parametric values. It is graphically demonstrated how wave number impacts the obtained traveling wave structures.
dc.description.sponsorshipDeanship of Scientific Research at King Khalid University, KSA [R.G.P2/214/43]
dc.description.sponsorshipThis research received no external funding.
dc.identifier.doi10.3390/fractalfract7020191
dc.identifier.issn2504-3110
dc.identifier.issue2
dc.identifier.scopus2-s2.0-85148890094
dc.identifier.scopusqualityQ1
dc.identifier.urihttps://doi.org/10.3390/fractalfract7020191
dc.identifier.urihttps://hdl.handle.net/20.500.12604/8215
dc.identifier.volume7
dc.identifier.wosWOS:000945045900001
dc.identifier.wosqualityQ1
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherMdpi
dc.relation.ispartofFractal and Fractional
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/openAccess
dc.snmzKA_20241222
dc.subjectmodified auxiliary equation method (MAE)
dc.subjectgeneralized Calogero-Bogoyavlenskii-Schiff equation (GCBSE)
dc.subjectanalytical solitary wave solutions
dc.subjectnew extended direct algebraic method
dc.titleThe Propagating Exact Solitary Waves Formation of Generalized Calogero-Bogoyavlenskii-Schiff Equation with Robust Computational Approaches
dc.typeArticle

Dosyalar