Investigation of a ternary blend of diesel/ethanol/n-butanol with binary nano additives on combustion and emission: A modeling and optimization approach with artificial neural networks

[ X ]

Tarih

2022

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Elsevier

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

The increase in global energy consumption and concerns about fossil fuels depletion are pushing the demand for renewable and clean energy sources. Alcohols are a promising candidate for internal combustion engines as alternative fuels. This study aims to reveal the effect of a ternary blend, which is denominated D80E10nB10, consisting of diesel (80%), ethanol (10%), and n-butanol (10%) on combustion and emission characteristics. The addition of both metal oxide (TiO2) and nonmetallic nanoparticle (MWCNT) was also investigated with the above-mentioned ternary blend fuels, which are denominated m- . The compression ignition engine was run under dual fuel mode with feeding H-2 in the range of 5 and 15 g/h, which were labeled D80E10nB10H5 and 15. The results revealed that the maximum pressure increased by 3.63 and 3.94% by adding 5 and 15 g/h H-2 respectively into ternary blend fuel under the full load. The highest BTE was obtained from modified diesel fuel which was 23.24% higher than diesel. Furthermore, 60 Artificial Neural Network (ANN) models were built to optimize test conditions. The optimal conditions for ternary blend fuel were found to be 4 g/h H-2 feeding rate while 5.5 g/h H-2 addition with modified ternary blend fuel would be the optimal.

Açıklama

Anahtar Kelimeler

Nano additive, TiO (2) and MWCNT, Hydrogen, N-Butanol, Optimization with ANN model

Kaynak

Fuel Processing Technology

WoS Q Değeri

Q1

Scopus Q Değeri

Q1

Cilt

229

Sayı

Künye