A new approach to COVID-19 detection from x-ray images using angle transformation with GoogleNet and LSTM

[ X ]

Tarih

2022

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Iop Publishing Ltd

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

Declared a pandemic disease, COVID-19 has affected the lives of millions of people and had significant effects on public health. Despite the development of effective vaccines against COVID-19, cases continue to increase worldwide. According to studies in the literature, artificial intelligence methods are used effectively for the detection of COVID-19. In particular, deep-learning-based approaches have achieved very good results in clinical diagnostic studies and other fields. In this study, a new approach using x-ray images is proposed to detect COVID-19. In the proposed method, the angle transform (AT) method is first applied to the x-ray images. The AT method proposed in this study is an important novelty in the literature, as there is no such approach in previous studies. This transformation uses the angle information created by each pixel on the image with the surrounding pixels. Using the AT approach, eight different images are obtained for each image in the dataset. These images are trained with a hybrid deep learning model, which combines GoogleNet and long short-term memory (LSTM) models, and COVID-19 disease detection is carried out. A dataset from the Mendeley database is used to test the proposed approach. A high classification accuracy of 98.97% is achieved with the AT + GoogleNet + LSTM approach. The results obtained were also compared with other studies in the literature. The presented results reveal that the proposed method is successful for COVID-19 detection using chest x-ray images. Direct transfer methods were also applied to the data set used in the study. However, worse results were observed according to the proposed approach. The proposed approach has the flexibility to be applied effectively to different medical images.

Açıklama

Anahtar Kelimeler

COVID-19, angle transformation, GoogleNet, LSTM

Kaynak

Measurement Science and Technology

WoS Q Değeri

Q3

Scopus Q Değeri

Q1

Cilt

33

Sayı

12

Künye