Computational analysis of Yamada–Ota and Xue models for surface tension gradient impact on radiative 3D flow of trihybrid nanofluid with Soret–Dufour effects

dc.authoridhttps://orcid.org/0000-0001-9832-1424
dc.contributor.authorSayer Obaid Alharbi
dc.contributor.authorMunawar Abbas
dc.contributor.authorAhmed Babeker Elhag
dc.contributor.authorAbdullah A. Faqihi
dc.contributor.authorAli Akgül
dc.date.accessioned2025-01-10T11:38:04Z
dc.date.available2025-01-10T11:38:04Z
dc.date.issued2024-12-23
dc.departmentFakülteler, Fen-Edebiyat Fakültesi, Matematik Bölümü
dc.description.abstractThis article discusses the significance of Soret and Dufour, non-uniform heat generation, activation energy on radiative 3D flow of trihybrid nanofluid over a sheet with Marangoni convection. The energy equation takes into consideration the impacts of the heat generation, while the concentration equation takes activation energy into account. This trihybrid nanofluid is based on ethylene glycol and contains nanoparticles of titanium dioxide (TiO2), cobalt ferrite (CoFe2O), and aluminum oxide (Al2O3). For the case of trihybrid nanoparticles, the Yamada–Ota and Xue nanofluid models have been modified. This model is helpful for optimizing heating and cooling systems in fields like energy systems, microelectronics, and aerospace engineering where exact control of thermal properties is essential. By adjusting the characteristics of nanofluids, it also enhances heat transfer rates, which is a critical component in the development of solar collectors and high-efficiency heat exchangers. By using the necessary similarity transformations, non-linear ODEs are obtained from the controlling PDEs. The shooting method (BVP4c) can be utilized to solve this system of highly nonlinear equations numerically. As the surface tension gradient parameter is increased, the velocity distribution, mass transfer, and heat transfer rates all increase but the performance of the thermal and solutal profiles is opposite.
dc.identifier.citationAlharbi, S. O., Abbas, M., Elhag, A. B., Faqihi, A. A., & Akgül, A. (2025). Computational analysis of Yamada–Ota and Xue models for surface tension gradient impact on radiative 3D flow of trihybrid nanofluid with Soret–Dufour effects. Microfluidics and Nanofluidics, 29(2), 4.
dc.identifier.doi10.1007/s10404-024-02777-1
dc.identifier.issn1613-4982
dc.identifier.issue2
dc.identifier.scopus2-s2.0-85212785174
dc.identifier.scopusqualityQ2
dc.identifier.urihttps://10.1007/s10404-024-02777-1
dc.identifier.urihttps://hdl.handle.net/20.500.12604/8420
dc.identifier.volume29
dc.institutionauthorAkgül, Ali
dc.institutionauthoridhttps://orcid.org/0000-0001-9832-1424
dc.language.isoen
dc.publisherSpringer Science and Business Media LLC
dc.relation.ispartofMicrofluidics and Nanofluidics
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectActivation energy
dc.subjectMarangoni convection
dc.subjectSoret and Dufour effects
dc.subjectTrihybrid nanofluid
dc.subjectYamada–Ota and Xue models
dc.titleComputational analysis of Yamada–Ota and Xue models for surface tension gradient impact on radiative 3D flow of trihybrid nanofluid with Soret–Dufour effects
dc.typejournal-article
oaire.citation.issue2
oaire.citation.volume29

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
[ X ]
İsim:
Akgül-Ali.pdf
Boyut:
1.94 MB
Biçim:
Adobe Portable Document Format
Lisans paketi
Listeleniyor 1 - 1 / 1
[ X ]
İsim:
license.txt
Boyut:
1.17 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: