A Nonlinear Structure of a Chemical Reaction Model and Numerical Modeling with the New Aspect of Existence and Uniqueness

dc.authoridIqbal, Muhammad Sajid/0000-0001-6929-8093
dc.authoridAhmed, Nauman/0000-0003-1742-585X
dc.authoridde la Sen, manuel/0000-0001-9320-9433
dc.authoridRafiq, Muhammad/0000-0002-2165-3479
dc.contributor.authorShaikh, Tahira Sumbal
dc.contributor.authorAkgul, Ali
dc.contributor.authorRehman, Muhammad Aziz-ur
dc.contributor.authorAhmed, Nauman
dc.contributor.authorIqbal, Muhammad Sajid
dc.contributor.authorShahid, Naveed
dc.contributor.authorRafiq, Muhammad
dc.date.accessioned2024-12-24T19:33:42Z
dc.date.available2024-12-24T19:33:42Z
dc.date.issued2023
dc.departmentSiirt Üniversitesi
dc.description.abstractIn this article, a nonlinear autocatalytic chemical reaction glycolysis model with the appearance of advection and diffusion is proposed. The occurrence and unicity of the solutions in Banach spaces are investigated. The solutions to these types of models are obtained by the optimization of the closed and convex subsets of the function space. Explicit estimates of the solutions for the admissible auxiliary data are formulated. An elegant numerical scheme is designed for an autocatalytic chemical reaction model, that is, the glycolysis model. The fundamental traits of the prescribed numerical method, for instance, the positivity, consistency, stability, etc., are also verified. The authenticity of the proposed scheme is ensured by comparing it with two extensively used numerical techniques. A numerical example is presented to observe the graphical behavior of the continuous system by constructing the numerical algorithm. The comparison depicts that the projected numerical design is more productive as compared to the other two schemes, as it holds all the important properties of the continuous model.
dc.description.sponsorshipBasque Government; [IT1555-22]; [KK-2022/00090 MCIN/AEI 269.10.13039/ 501100011033]; [PID2021-1235430B-C21/C22]
dc.description.sponsorshipBasque Government, Grant IT1555-22 and Grant KK-2022/00090 MCIN/AEI 269.10.13039/ 501100011033, Grant PID2021-1235430B-C21/C22.
dc.identifier.doi10.3390/math11010037
dc.identifier.issn2227-7390
dc.identifier.issue1
dc.identifier.scopus2-s2.0-85145913543
dc.identifier.scopusqualityQ1
dc.identifier.urihttps://doi.org/10.3390/math11010037
dc.identifier.urihttps://hdl.handle.net/20.500.12604/8234
dc.identifier.volume11
dc.identifier.wosWOS:000909260800001
dc.identifier.wosqualityQ1
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherMdpi
dc.relation.ispartofMathematics
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/openAccess
dc.snmzKA_20241222
dc.subjectoptimal solution
dc.subjectauxiliary data
dc.subjectadvection
dc.subjectequilibrium point
dc.subjectglycolysis
dc.subjectdiffusion
dc.subjectstructure preserving
dc.titleA Nonlinear Structure of a Chemical Reaction Model and Numerical Modeling with the New Aspect of Existence and Uniqueness
dc.typeArticle

Dosyalar