An improved feature extraction method using texture analysis with LBP for bearing fault diagnosis

[ X ]

Tarih

2020

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Elsevier

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

Bearings are one of the most widespread components used for energy transformation in machines. Mechanical wear and faulty bearings reduce the efficiency of rotating machines and thus increase energy consumption. The feature extraction process is an essential part of fault diagnosis in bearings. In order to diagnose the fault caused by the bearing correctly, it is necessary to determine an effective feature extraction method that best describes the fault. In this study, a new approach based on texture analysis is proposed for diagnosing bearing vibration signals. Bearing vibration signals were first converted to gray scale images. It can be understood from the images that the signals of different bearing failures form different textures. Then, using these images, LBP (Local Binary Pattern) and texture features were obtained. Using these features, different machine learning models and bearing vibration signals are classified. Three different data sets were created to test the proposed approach. For the first data set, the signals composed of very close velocities were classified. 95.9% success rate was observed for the first data set. The second data set consists of faulty signals at different parts of the bearing (inner ring, outer ring and ball) measured in the same RPM. The type of fault has been determined, and a 100% success rate was obtained for this data set. The final data set is composed of the fault size dimensions (mm) of different ratios. With the proposed approach, a 100% success rate was obtained in the classification of these signals. As a result, it was observed that the obtained feature had promising results for three different data types and was more successful than the traditional methods. (C) 2019 Elsevier B.V. All rights reserved.

Açıklama

Anahtar Kelimeler

Feature extraction, Texture analysis, Vibration signals, Local binary pattern

Kaynak

Applied Soft Computing

WoS Q Değeri

Q1

Scopus Q Değeri

Q1

Cilt

87

Sayı

Künye