Dynamical study of a novel 4D hyperchaotic system: An integer and fractional order analysis

dc.authoridAhmad, Shabir/0000-0002-5610-6248
dc.authoridIskakova, kulpash/0000-0002-5833-9205
dc.authoridALAM, MOHAMMAD MAHTAB/0000-0003-3966-6988
dc.authoridYILMAZ BINGOL, GULNUR/0000-0001-8940-7883
dc.contributor.authorIskakova, Kulpash
dc.contributor.authorAlam, Mohammad Mahtab
dc.contributor.authorAhmad, Shabir
dc.contributor.authorSaifullah, Sayed
dc.contributor.authorAkguel, Ali
dc.contributor.authorYilmaz, Guelnur
dc.date.accessioned2024-12-24T19:27:29Z
dc.date.available2024-12-24T19:27:29Z
dc.date.issued2023
dc.departmentSiirt Üniversitesi
dc.description.abstractIn this article, a new nonlinear four-dimensional hyperchaotic model is presented. The dynamical aspects of the complex system are analyzed covering equilibrium points, linear stability, dissipation, bifurcations, Lyapunov exponent, phase portraits, Poincare mapping, attractor projection, sensitivity and time series analysis. To analyze hidden attractors, the proposed system is investigated through nonlocal operator in Caputo sense. The existence of solution of the system in fractional sense is studied by fixed point theory. The stability of fractional order system is demonstrated via Matignon stability criteria. The fractional order system is numerically studied via newly developed numerical method which is based on Newton polynomial interpolation. The evolution of the attractors are depicted with different fractional orders. For few fractional orders, some hidden strange chaotic attractors are observed through graphs. Theoretical and numerical studies demonstrate that this model has complex dynamics with some stimulating physical characteristics. To verify and validate the results, we implement Field Programmable Analog Arrays (FPAA).(c) 2023 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights reserved.
dc.description.sponsorshipDeanship of Scientific Research, King Khalid University, Abha, Saudi Arabia [1/125/43]
dc.description.sponsorshipThe authors are thankful to the Deanship of Scientific Research, King Khalid University, Abha, Saudi Arabia, for financially supporting this work through the General Research Project under Grant no. R.G.P.1/125/43.
dc.identifier.doi10.1016/j.matcom.2023.01.024
dc.identifier.endpage245
dc.identifier.issn0378-4754
dc.identifier.issn1872-7166
dc.identifier.scopus2-s2.0-85147246240
dc.identifier.scopusqualityQ1
dc.identifier.startpage219
dc.identifier.urihttps://doi.org/10.1016/j.matcom.2023.01.024
dc.identifier.urihttps://hdl.handle.net/20.500.12604/6655
dc.identifier.volume208
dc.identifier.wosWOS:001008823700001
dc.identifier.wosqualityQ1
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherElsevier
dc.relation.ispartofMathematics and Computers in Simulation
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_20241222
dc.subjectBifurcations
dc.subjectChaos
dc.subjectPoincaremapping
dc.subjectLyapunov exponent
dc.subjectNewton polynomial
dc.titleDynamical study of a novel 4D hyperchaotic system: An integer and fractional order analysis
dc.typeArticle

Dosyalar