An exact solution of heat and mass transfer analysis on hydrodynamic magneto nanofluid over an infinite inclined plate using Caputo fractional derivative model

dc.authoridVijaya Kumar, A G/0000-0002-3711-7566
dc.authoridAbu-Zinadah, Hanaa/0000-0002-0343-9604
dc.contributor.authorKayalvizhi, J.
dc.contributor.authorKumar, A. G. Vijaya
dc.contributor.authorSene, Ndolane
dc.contributor.authorAkguel, Ali
dc.contributor.authorInc, Mustafa
dc.contributor.authorAbu-Zinadah, Hanaa
dc.contributor.authorAbdel-Khalek, S.
dc.date.accessioned2024-12-24T19:34:03Z
dc.date.available2024-12-24T19:34:03Z
dc.date.issued2022
dc.departmentSiirt Üniversitesi
dc.description.abstractThis paper presents the problem modeled using Caputo fractional derivatives with an accurate study of the MHD unsteady flow of Nanofluid through an inclined plate with the mass diffusion effect in association with the energy equation. H2O is thought to be a base liquid with clay nanoparticles floating in it in a uniform way. Bousinessq's approach is used in the momentum equation for pressure gradient. The nondimensional fluid temperature, species concentration, and fluid transport are derived together with Jacob Fourier sine and Laplace transforms Techniques in terms of exponential decay function, whose inverse is computed further in terms of Mittag-Leffler function. The impact of various physical quantities interpreted with fractional order of the Caputo derivatives. The obtained temperature, transport, and species concentration profiles show behaviours for 0 < alpha <1 where alpha is the fractional parameter. Numerical calculations have been carried out for the rate of heat transmission and the Sherwood number is swotted to be put in the form of tables. The parameters for the magnetic field and the angle of inclination slow down the boundary layer of momentum. The distributions of velocity, temperature, and concentration expand more rapidly for higher values of the fractional parameter. Additionally, it is revealed that for the volume fraction of nanofluids, the concentration profiles behave in the opposite manner. The limiting case solutions also presented on flow field of governing model.
dc.description.sponsorshipTaif University, Taif, Saudi Arabia [TURSP-2020/154]
dc.description.sponsorshipTaif University Researchers Supporting Project number (TURSP-2020/154) , Taif University, Taif, Saudi Arabia.
dc.identifier.doi10.3934/math.2023180
dc.identifier.endpage3560
dc.identifier.issn2473-6988
dc.identifier.issue2
dc.identifier.scopus2-s2.0-85142344295
dc.identifier.scopusqualityQ1
dc.identifier.startpage3542
dc.identifier.urihttps://doi.org/10.3934/math.2023180
dc.identifier.urihttps://hdl.handle.net/20.500.12604/8404
dc.identifier.volume8
dc.identifier.wosWOS:000890599100003
dc.identifier.wosqualityQ1
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherAmer Inst Mathematical Sciences-Aims
dc.relation.ispartofAims Mathematics
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/openAccess
dc.snmzKA_20241222
dc.subjectnanofluid
dc.subjectheat and mass transfer
dc.subjectmagnetic field
dc.subjectCaputo fractional derivative
dc.subjectFourier and integral transforms
dc.titleAn exact solution of heat and mass transfer analysis on hydrodynamic magneto nanofluid over an infinite inclined plate using Caputo fractional derivative model
dc.typeArticle

Dosyalar