Lie symmetries, bifurcation analysis, and Jacobi elliptic function solutions to the nonlinear Kodama equation
[ X ]
Tarih
2023
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Elsevier
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
The present article formally studies the propagation of optical pulses in a nonlinear medium governed by the nonlinear Kodama equation. For this purpose, the Lie symmetries group is first adopted for similarity reduction and constructing some exact solutions of the governing equation. After deriving the dynamical system of the nonlinear Kodama equation, its bifurcation analysis is accomplished using the idea of the planar dynamical system. Through perturbing the resultant dynamical system using a trigonometric function, chaotic characteristics of the governing model are analyzed by serving several two- and three-dimensional phase portraits. A sensitivity analysis of the dynamical system is performed using the Runge-Kutta method to ensure that small changes in initial conditions have little impact on solution stability. Finally, using the technique of the planar dynamical system, a number of Jacobi elliptic function solutions (in special cases, bright and dark solitons) are constructed for the nonlinear Kodama equation. It has been shown that bright and dark solitons can be controlled for their width and height effectively by the achievements of the current paper.
Açıklama
Anahtar Kelimeler
Nonlinear Kodama equation, Lie symmetries, Bifurcation analysis, Chaotic characteristics, Sensitivity analysis, Bright and dark solitons
Kaynak
Results in Physics
WoS Q Değeri
Q1
Scopus Q Değeri
Q1
Cilt
54