Some geometric properties of generalized difference Cesàro sequence spaces

dc.contributor.authorŞengül, Hacer
dc.contributor.authorEt, Mikail
dc.date.accessioned2024-12-24T19:10:07Z
dc.date.available2024-12-24T19:10:07Z
dc.date.issued2017
dc.departmentSiirt Üniversitesi
dc.description.abstractIn this paper, we define the generalized Cesàro difference sequence space C(p) (?m) and consider it equipped with the Luxemburg normunder which it is a Banach space and we show that in the space C(p) (?m) every weakly convergent sequence on the unit sphere converges is the norm, where p = (pn) is a bounded sequence of positive real numbers with pn > 1 for all n ? N. © 2017 by the Mathematical Association of Thailand. All rights reserved.
dc.identifier.endpage474
dc.identifier.issn1686-0209
dc.identifier.issue2
dc.identifier.scopus2-s2.0-85028745105
dc.identifier.scopusqualityQ4
dc.identifier.startpage465
dc.identifier.urihttps://hdl.handle.net/20.500.12604/3932
dc.identifier.volume15
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherChiang Mai University
dc.relation.ispartofThai Journal of Mathematics
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_20241222
dc.subjectCesàro difference sequence space
dc.subjectConvex modular
dc.subjectExtreme point
dc.subjectLuxemburg norm
dc.subjectProperty (H)
dc.titleSome geometric properties of generalized difference Cesàro sequence spaces
dc.typeArticle

Dosyalar