Some geometric properties of generalized difference Cesàro sequence spaces
dc.contributor.author | Şengül, Hacer | |
dc.contributor.author | Et, Mikail | |
dc.date.accessioned | 2024-12-24T19:10:07Z | |
dc.date.available | 2024-12-24T19:10:07Z | |
dc.date.issued | 2017 | |
dc.department | Siirt Üniversitesi | |
dc.description.abstract | In this paper, we define the generalized Cesàro difference sequence space C(p) (?m) and consider it equipped with the Luxemburg normunder which it is a Banach space and we show that in the space C(p) (?m) every weakly convergent sequence on the unit sphere converges is the norm, where p = (pn) is a bounded sequence of positive real numbers with pn > 1 for all n ? N. © 2017 by the Mathematical Association of Thailand. All rights reserved. | |
dc.identifier.endpage | 474 | |
dc.identifier.issn | 1686-0209 | |
dc.identifier.issue | 2 | |
dc.identifier.scopus | 2-s2.0-85028745105 | |
dc.identifier.scopusquality | Q4 | |
dc.identifier.startpage | 465 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12604/3932 | |
dc.identifier.volume | 15 | |
dc.indekslendigikaynak | Scopus | |
dc.language.iso | en | |
dc.publisher | Chiang Mai University | |
dc.relation.ispartof | Thai Journal of Mathematics | |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | |
dc.rights | info:eu-repo/semantics/closedAccess | |
dc.snmz | KA_20241222 | |
dc.subject | Cesàro difference sequence space | |
dc.subject | Convex modular | |
dc.subject | Extreme point | |
dc.subject | Luxemburg norm | |
dc.subject | Property (H) | |
dc.title | Some geometric properties of generalized difference Cesàro sequence spaces | |
dc.type | Article |