Positive integer powers of one type of complex tridiagonal matrix

dc.contributor.authorÖteleş, Ahmet
dc.contributor.authorAkbulak, Mehmet
dc.date.accessioned2024-12-24T19:09:49Z
dc.date.available2024-12-24T19:09:49Z
dc.date.issued2014
dc.departmentSiirt Üniversitesi
dc.description.abstractIn this paper, we firstly present a general expression for the entries of the rth (r ? ?) power of a certain n-square complex tridiagonal matrix, in terms of the Chebyshev polynomials of the first kind. Secondly, we obtain two complex factorizations for Fibonacci and Pell numbers. We also give some Maple 13 procedures in order to verify our calculations. © 2014, School of Mathematical Sciences. All rights reserved.
dc.identifier.endpage982
dc.identifier.issn0126-6705
dc.identifier.issue4
dc.identifier.scopus2-s2.0-84907997618
dc.identifier.scopusqualityQ1
dc.identifier.startpage971
dc.identifier.urihttps://hdl.handle.net/20.500.12604/3800
dc.identifier.volume37
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherSchool of Mathematical Sciences
dc.relation.ispartofBulletin of the Malaysian Mathematical Sciences Society
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_20241222
dc.subjectChebyshev polynomials
dc.subjectEigenvalues
dc.subjectEigenvectors
dc.subjectJordan’s form
dc.subjectTridiagonal matrices
dc.titlePositive integer powers of one type of complex tridiagonal matrix
dc.typeArticle

Dosyalar