On ?-Hilfer generalized proportional fractional operators

dc.contributor.authorMallah, Ishfaq
dc.contributor.authorAhmed, Idris
dc.contributor.authorAkgul, Ali
dc.contributor.authorJarad, Fahd
dc.contributor.authorAlha, Subhash
dc.date.accessioned2024-12-24T19:33:59Z
dc.date.available2024-12-24T19:33:59Z
dc.date.issued2021
dc.departmentSiirt Üniversitesi
dc.description.abstractIn this paper, we introduce a generalized fractional operator in the setting of Hilfer fractional derivatives, the psi-Hilfer generalized proportional fractional derivative of a function with respect to another function. The proposed operator can be viewed as an interpolator between the Riemann-Liouville and Caputo generalized proportional fractional operators. The properties of the proposed operator are established under some classical and standard assumptions. As an application, we formulate a nonlinear fractional differential equation with a nonlocal initial condition and investigate its equivalence with Volterra integral equations, existence, and uniqueness of solutions. Finally, illustrative examples are given to demonstrate the theoretical results.
dc.identifier.doi10.3934/math.2022005
dc.identifier.endpage102
dc.identifier.issn2473-6988
dc.identifier.issue1
dc.identifier.startpage82
dc.identifier.urihttps://doi.org/10.3934/math.2022005
dc.identifier.urihttps://hdl.handle.net/20.500.12604/8371
dc.identifier.volume7
dc.identifier.wosWOS:000705812600005
dc.identifier.wosqualityQ1
dc.indekslendigikaynakWeb of Science
dc.language.isoen
dc.publisherAmer Inst Mathematical Sciences-Aims
dc.relation.ispartofAims Mathematics
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/openAccess
dc.snmzKA_20241222
dc.subjectHilfer fractional derivative
dc.subjectgeneralized proportional fractional derivative
dc.subjectexistence and uniqueness
dc.subjectweighed space
dc.subjectfixed point theorems
dc.titleOn ?-Hilfer generalized proportional fractional operators
dc.typeArticle

Dosyalar