Thermophoretic particle deposition in thermo-bioconvection flow of diamond-SiC-Co₃O₄/water-based trihybrid nanofluid with oxytactic and gyrotactic microorganisms: biotechnological applications

dc.contributor.authorIbrahim Mahariq
dc.contributor.authorRiadh Marzouki
dc.contributor.authorHawzhen Fateh M. Ameen
dc.contributor.authorMunawar Abbas
dc.contributor.authorBarno Abdullaeva
dc.contributor.authorMaawiya Ould Sidi
dc.contributor.authorAbdullah A. Faqihi
dc.contributor.authorAli Akgül
dc.contributor.authorAhmed M. Galal
dc.date.accessioned2025-04-16T08:12:21Z
dc.date.available2025-04-16T08:12:21Z
dc.date.issued2025-04-09
dc.departmentFakülteler, Fen-Edebiyat Fakültesi, Matematik Bölümü
dc.description.abstractThe present study investigates the impacts of heat generation and Marangoni convection on the thermophoretic particle deposition in chemical reactive flow of Diamond -SiC- Co3O4Diamond -SiC- Co3O4WaterWater-based trihybrid nanofluid across a sheet with oxytactic and gyrotactic microorganisms. Gradients of surface tension are varied to find Marangoni convection. It can be used in a variety of industries, including welding, crystal formation, soap film stabilization, and drying silicon wafer. The trihybrid nanofluid Diamond -SiC- Co3O4Diamond -SiC- Co3O4H2OH2O flow model is made up of nanoparticles of diamond ND, and cobalt oxide Co3O4, silicon carbide SiC dissolved in water H2O. This model has applications in advanced bioengineering and environmental processes, including biofuel generation, wastewater treatment, and medication delivery system improvement. Microorganisms improve mass and heat transfer, which is advantageous for biomedical applications and microfluidic systems. Furthermore, industrial processes needing effective heat transfer, such cooling systems in biotechnology labs and reactors, can be optimized by the trihybrid nanofluid’s enhanced thermal characteristics. The constitutive equations were converted into ODEs using similarity variables, and then they were resolved applying MATLAB’s bvp4c function. The outcomes demonstrate that the modified model more exactly indicates higher heat transfer rates than the classical model. Concentration and oxytactic microorganism distributions decrease with increasing thermophoretic parameter.
dc.identifier.doi10.1007/s10973-025-14172-1
dc.identifier.issn1388-6150
dc.identifier.issn1588-2926
dc.identifier.scopus2-s2.0-105002172663
dc.identifier.scopusqualityQ1
dc.identifier.urihttps://doi.org/10.1007/s10973-025-14172-1
dc.identifier.urihttps://hdl.handle.net/20.500.12604/8613
dc.indekslendigikaynakScopus
dc.institutionauthorAkgül, Ali
dc.language.isoen
dc.publisherSpringer Science and Business Media LLC
dc.relation.ispartofJournal of Thermal Analysis and Calorimetry
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectClassical and modified Hamilton-Crosser models
dc.subjectNon-uniform heat generation
dc.subjectOxytactic and gyrotactic microorganisms
dc.subjectThermo-bioconvection
dc.subjectTrihybrid nanofluid
dc.titleThermophoretic particle deposition in thermo-bioconvection flow of diamond-SiC-Co₃O₄/water-based trihybrid nanofluid with oxytactic and gyrotactic microorganisms: biotechnological applications
dc.typejournal-article

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
Ali-Akgül-2025.pdf
Boyut:
2.56 MB
Biçim:
Adobe Portable Document Format
Lisans paketi
Listeleniyor 1 - 1 / 1
[ X ]
İsim:
license.txt
Boyut:
1.17 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: