Numerical solution of Maxwell-Sutterby nanofluid flow inside a stretching sheet with thermal radiation, exponential heat source/sink, and bioconvection

dc.contributor.authorAlharbi, Khalid Abdulkhaliq M.
dc.contributor.authorFarooq, Umar
dc.contributor.authorWaqas, Hassan
dc.contributor.authorImran, Muhammad
dc.contributor.authorNoreen, Sobia
dc.contributor.authorAkgül, Ali
dc.contributor.authorBaleanu, Dumitru
dc.date.accessioned2024-12-24T19:10:21Z
dc.date.available2024-12-24T19:10:21Z
dc.date.issued2023
dc.departmentSiirt Üniversitesi
dc.description.abstractA Survey of literature illustrates that nano liquid is further helpful for heat transportation as compared to regular liquid. Nonetheless, there are considerable gaps in our understanding of existing approaches for enhancing heat transmission in nanofluids, necessitating comprehensive research of these fluids. The current approach proposes to investigate the influence of a Maxwell-Sutterby nanofluid on a sheet while accounting for heat radiation. This paper investigates activation energy, and exponential heat source/sink. Bioconvection and motile microorganisms with Brownian motion and thermophoresis effects are considered.y linked similarity transformations, the boundary layer set of controlling partial differential equations are transformed into ordinary differential equations. A numerical strategy (shooting technique) is used to handle the transformed system of ordinary differential equations through the Bvp4c solver of the computing tool MATLAB. The results for velocity and temperature, concentration, and motile microbe profiles are numerically and graphically examined for various parameters. The velocity distribution profile decreased as the magnetic parameter varied, but increased when the mixed convection parameter increased in magnitude. The heat flux profile is improved with higher estimations of the Biot number and thermophoresis parameter. When the Prandtl number and the Brownian motion parameter's values rise, the energy profile falls. When the Peclet number and bioconvection Lewis number increased, the profile of mobile microorganisms dropped. © 2023
dc.description.sponsorshipDeanship of Scientific Research at Umm Al-Qura University, (22UQU4310392DSR27)
dc.identifier.doi10.1016/j.ijft.2023.100339
dc.identifier.issn2666-2027
dc.identifier.scopus2-s2.0-85151028380
dc.identifier.scopusqualityQ1
dc.identifier.urihttps://doi.org10.1016/j.ijft.2023.100339
dc.identifier.urihttps://hdl.handle.net/20.500.12604/4064
dc.identifier.volume18
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherElsevier B.V.
dc.relation.ispartofInternational Journal of Thermofluids
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/openAccess
dc.snmzKA_20241222
dc.subjectActivation energy
dc.subjectBioconvection
dc.subjectExponential heat source/sink
dc.subjectMaxwell-Sutterby nanofluid
dc.subjectMotile microorganisms
dc.subjectShooting approach
dc.subjectStretching sheet
dc.subjectThermal radiation
dc.titleNumerical solution of Maxwell-Sutterby nanofluid flow inside a stretching sheet with thermal radiation, exponential heat source/sink, and bioconvection
dc.typeArticle

Dosyalar