Diagnostic estimation of OSAS using binary mixture logistic regression

dc.contributor.authorKaya, Yilmaz
dc.contributor.authorTa?luk, M. Emin
dc.contributor.authorSezgin, Necmettin
dc.date.accessioned2024-12-24T19:09:45Z
dc.date.available2024-12-24T19:09:45Z
dc.date.issued2012
dc.departmentSiirt Üniversitesi
dc.description2012 20th Signal Processing and Communications Applications Conference, SIU 2012 -- 18 April 2012 through 20 April 2012 -- Fethiye, Mugla -- 90786
dc.description.abstractBinary (Binomial) Logistic Regression is a statistical model that can be used for classification. Concerning the targeted outcome, if the variance of observations is higher than the variance of expectations, because of overdispersion the success rate of the method in classification goes down. This overdispersion is thought as arising from the unobserved heterogen samples in the data set. In Composite models, the overdispersion is minimized by clustering the data into homogeneous subsets and performing a subset based process. In this study a composite binary logistic regression was used for estimating the sleep apnea. Through this model, snoring signals were classified and with a 98.16% success rate the apnea was diagnosed. © 2012 IEEE.
dc.identifier.doi10.1109/SIU.2012.6204663
dc.identifier.isbn978-146730056-8
dc.identifier.scopus2-s2.0-84863459112
dc.identifier.scopusqualityN/A
dc.identifier.urihttps://doi.org10.1109/SIU.2012.6204663
dc.identifier.urihttps://hdl.handle.net/20.500.12604/3730
dc.indekslendigikaynakScopus
dc.language.isotr
dc.relation.ispartof2012 20th Signal Processing and Communications Applications Conference, SIU 2012, Proceedings
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_20241222
dc.subjectMixture Models
dc.subjectOSAS
dc.subjectSignal Processing
dc.titleDiagnostic estimation of OSAS using binary mixture logistic regression
dc.title.alternativeUyku apnesi?ni?n i?ki? durumlu kompozi?t loji?sti?k regresyon i?le tespi?ti?
dc.typeConference Object

Dosyalar