Neural network architecture to optimize the nanoscale thermal transport of ternary magnetized Carreau nanofluid over 3D wedge

dc.contributor.authorAlqudah, Mohammad
dc.contributor.authorZahir Hussain Shah, Syed
dc.contributor.authorBilal Riaz, Muhammad
dc.contributor.authorAbd El-Wahed Khalifa, Hamiden
dc.contributor.authorAkgül, Ali
dc.contributor.authorAyub, Assad
dc.date.accessioned2024-12-24T19:10:11Z
dc.date.available2024-12-24T19:10:11Z
dc.date.issued2024
dc.departmentSiirt Üniversitesi
dc.description.abstractSignificance: Incorporation of nanoparticles in base fluid water is significant for analysis of thermal behavior of nanofluid mixtures, which has various applications in materials science and thermal engineering, and supervised neural scheme predicts the thermal behavior by solving Carreau nanofluid model. Motive: This article brings the investigation related to prediction of thermal transport of a ternary magnetized hybrid nanofluid [(Al2O3, CuO, TiO2)/H2O] with a three-dimensional Carreau nanofluid model over a wedge. Three nanoparticles dispersed in water (H2O). Inclined magnetic field is considered for judgement of velocity profile and thermal radiation is utilized to scrutinize the temperature distribution of nanofluid. The Carreau mathematical model is chosen to depict the rheological characteristics of non-Newtonian fluids at very high and very low shear rate. Methodology: Physical assumptions creates the system of Partial differential equations (PDEs) and these are converted into ordinary differential equations (ODEs) by similarity tool. Further ODEs are dealt with bvp4c scheme and further prediction of solution is made by Levenberg-Marquardt neural network (LM-NN) supervised neural scheme. Findings: Increased volume friction coefficients of nanoparticles increases the transport of heat. High inclined magnetic effect, thermal radiation, pressure gradient and shear strain parameter predict higher thermal transport. © 2024 The Author(s)
dc.description.sponsorshipMinisterstvo Školství, Mláde?e a T?lov?chovy, MŠMT, (90254); Ministerstvo Školství, Mláde?e a T?lov?chovy, MŠMT
dc.identifier.doi10.1016/j.rinp.2024.107616
dc.identifier.issn2211-3797
dc.identifier.scopus2-s2.0-85189664900
dc.identifier.scopusqualityQ1
dc.identifier.urihttps://doi.org10.1016/j.rinp.2024.107616
dc.identifier.urihttps://hdl.handle.net/20.500.12604/3987
dc.identifier.volume59
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherElsevier B.V.
dc.relation.ispartofResults in Physics
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/openAccess
dc.snmzKA_20241222
dc.subject3D wedge
dc.subjectCarreau model
dc.subjectDeep learning supervised neural scheme
dc.subjectMagnetized environment
dc.subjectNanofluid
dc.subjectNanoparticles
dc.subjectThermal radiation
dc.titleNeural network architecture to optimize the nanoscale thermal transport of ternary magnetized Carreau nanofluid over 3D wedge
dc.typeArticle

Dosyalar