New Applications of Sumudu Transform Method with Different Fractional Derivatives

dc.contributor.authorKaratas Akgül, Esra
dc.contributor.authorAkgül, Ali
dc.date.accessioned2024-12-24T19:10:14Z
dc.date.available2024-12-24T19:10:14Z
dc.date.issued2022
dc.departmentSiirt Üniversitesi
dc.description.abstractCaputo fractional derivative and Riemann–Liouville integral are very helpful operators to model non-local behaviours. Then by using these operators, investigators defined a new operator that is the proportional derivative. In some cases, this operator can be written like a linear combination of a Riemann–Liouville integral and a Caputo derivative. In this study, we used Caputo derivative and constant proportional Caputo derivative when solving our examples with Sumudu transform method. © 2022, The Author(s), under exclusive licence to Springer Nature India Private Limited.
dc.identifier.doi10.1007/s40819-022-01452-9
dc.identifier.issn2349-5103
dc.identifier.issue5
dc.identifier.scopus2-s2.0-85137217275
dc.identifier.scopusqualityQ2
dc.identifier.urihttps://doi.org10.1007/s40819-022-01452-9
dc.identifier.urihttps://hdl.handle.net/20.500.12604/4014
dc.identifier.volume8
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherSpringer
dc.relation.ispartofInternational Journal of Applied and Computational Mathematics
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_20241222
dc.subjectFractional derivative
dc.subjectPower-law kernel
dc.subjectProportional derivative
dc.subjectSumudu transforms
dc.titleNew Applications of Sumudu Transform Method with Different Fractional Derivatives
dc.typeArticle

Dosyalar