New Applications of Sumudu Transform Method with Different Fractional Derivatives
dc.contributor.author | Karatas Akgül, Esra | |
dc.contributor.author | Akgül, Ali | |
dc.date.accessioned | 2024-12-24T19:10:14Z | |
dc.date.available | 2024-12-24T19:10:14Z | |
dc.date.issued | 2022 | |
dc.department | Siirt Üniversitesi | |
dc.description.abstract | Caputo fractional derivative and Riemann–Liouville integral are very helpful operators to model non-local behaviours. Then by using these operators, investigators defined a new operator that is the proportional derivative. In some cases, this operator can be written like a linear combination of a Riemann–Liouville integral and a Caputo derivative. In this study, we used Caputo derivative and constant proportional Caputo derivative when solving our examples with Sumudu transform method. © 2022, The Author(s), under exclusive licence to Springer Nature India Private Limited. | |
dc.identifier.doi | 10.1007/s40819-022-01452-9 | |
dc.identifier.issn | 2349-5103 | |
dc.identifier.issue | 5 | |
dc.identifier.scopus | 2-s2.0-85137217275 | |
dc.identifier.scopusquality | Q2 | |
dc.identifier.uri | https://doi.org10.1007/s40819-022-01452-9 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12604/4014 | |
dc.identifier.volume | 8 | |
dc.indekslendigikaynak | Scopus | |
dc.language.iso | en | |
dc.publisher | Springer | |
dc.relation.ispartof | International Journal of Applied and Computational Mathematics | |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | |
dc.rights | info:eu-repo/semantics/closedAccess | |
dc.snmz | KA_20241222 | |
dc.subject | Fractional derivative | |
dc.subject | Power-law kernel | |
dc.subject | Proportional derivative | |
dc.subject | Sumudu transforms | |
dc.title | New Applications of Sumudu Transform Method with Different Fractional Derivatives | |
dc.type | Article |