Meme Ultrason Görüntülerinde Kanser Hücre Segmentasyonu için Yeni Bir FCN Modeli

[ X ]

Tarih

2023

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Erişim Hakkı

info:eu-repo/semantics/openAccess

Özet

Meme kanseri kadınlar arasında yaygın bir hastalıktır. Zamanında teşhis ve uygun müdahale, iyileşme beklentilerini önemli ölçüde artırır ve hastalığın ilerlemesini engeller. Meme kanserinin görsel görüntüleri, meme dokusunu kötü huylu ve kötü huylu olmayan alanlara ayırmaya hizmet ederek, kötü huylu hücrelerin ayırt edilmesi, tümör boyutlarının değerlendirilmesi ve neoplazmın evrelendirilmesi dahil olmak üzere çok önemli bilgiler sağlar. Meme kanseri taramaları, özellikle genç ve hamile kadınlar grubundaki hassasiyetleri iyileştirmek için yürürlüğe konmuştur. Bununla birlikte, radyografik tasvirlerin incelenmesinin yanlışlıkla bazı incelikleri gözden kaçırabileceği durumlar da vardır. Gelişmiş yapay zeka paradigmaları, sofistike hesaplama metodolojileri ile birleştiğinde, daha yüksek hassasiyette sonuçlar elde etmek için kullanılmaktadır. Bu bağlamda, ultrason teknolojisi tarafından kolaylaştırılan segmentasyon metodolojisi çok önemli bir müdahale olarak ortaya çıkmaktadır. Mevcut araştırmada, sapmaların tanımlanması ve kanserojen bölgelerin belirlenmesi için U-Net ve yenilikçi bir Fully Convolutional Network mimarisinden yararlanılmıştır. Bu çalışma kapsamında önerilen Fully Convolutional Network mimarisi, test görüntülerinde %77,2 MeanIoU, %71,6 precision, %77,7 recall ve %74,5 F1 skoru elde edilmiştir. U-Net modeli ile %76,4 MeanIoU, %67,6 precision, %80,4 recall ve %73 F1 skoru elde edilmiştir. Bulgular, önerilen Fully Convolutional Network mimarisinin U-Net modeline göre daha iyi performans sergilediğini ortaya koymuştur. Bu sonuçlar, meme kanseri teşhisi ve tedavisi için segmentasyon işleminin önemini vurgulamakta ve önerilen Fully Convolutional Network mimarisinin U-Net mimarisinden daha başarılı olduğunu ortaya koymaktadır.

Açıklama

Anahtar Kelimeler

U-Net, segmentasyon, Fully Convolutional Network, meme görüntüsü, kanserli hücre

Kaynak

Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi

WoS Q Değeri

Scopus Q Değeri

Cilt

23

Sayı

5

Künye