Yeşil sentez yöntemi ile üretilen metal oksit katalizörlerinin PEM yakıt pili hücrelerinde uygulamaları
[ X ]
Tarih
2023
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Siirt Üniversitesi
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
PEM yakıt hücreleri çevre dostu güç kaynakları ile ilgili sorunu hafifletmek ve diğer yenilenebilir enerji kaynaklarının sürdürülebilirlik problemini ortadan kaldırmak için en güçlü alternatiftir. PEM yakıt hücre teknolojisinin ticarileştirilmesi, Pt bazlı katalizörlerin yüksek maliyeti nedeniyle büyük ölçüde engellenmiştir. Bu engellerin üstesinden gelebilmek için, düşük maliyetli, elektriksel iletkenliği güçlü metal-destek etkileşimli destekleyici malzemeler kullanılarak Pt yüklemesini azaltmak ve dayanıklı aktif katalizörler kullanmaktır. Bu tez çalışmasında, yeşil sentez yöntemi ile incir yaprağı ekstrağı kullanılarak FeO, ayrı ayrı farklı yüzdelerde (%1, %5 ve %10) Cu ve Zr katkılı FeO nanoparçacıkları sentezlendi. Sentezlenen nanoparçacıklar, kimyasal indirgeme yöntemi kullanılarak platin ve aktif karbon ile katkılandırılarak Pt-FeO/C, Pt-CuFeO/C, Pt-Cu5FeO/C, Pt-Cu10FeO/C, Pt-ZrFeO/C, Pt-Zr5FeO/C ve Pt-Zr10FeO/C katalizörleri sentezlendi. Sentezlenen katalizörler, tek hücreli PEM yakıt pilinde ayrı ayrı anot ve katot elektrokatalizörü olarak kullanıldı. Sentezlenen katalizörlerin, PEM yakıt pili hücresi uygulamalarında farklı hücre (40, 50, 60 ve 70 ºC) sıcaklıklarında çalışılarak en iyi aktivitenin ölçüldüğü hücre sıcaklıkları belirlendi. Yakıt pilini beslemek için verilen gaz debileri, oksijen için 40 mL/dk ve hidrojen için 20 mL/dk ayarlanarak %100 hücre nemlendirilmesinde çalışıldı. Yakıt pili hücresinin farklı sıcaklıklarda oluşturulan akım yoğunluğu-gerilim-güç yoğunluğu polarizasyon eğrileri ile hücrenin aktivitesi ve verimi incelendi. Sentezlenen katalizörler 70 ºC hücre sıcaklığında katot elektrokatalizörü olarak kullanımında güç yoğunlukları arasında PtCu5FeO/C >PtZrFeO/C> PtFeO/C> Pt/C ve aynı sıcaklıkta anot elektrokatalizörü olarak kullanımında ise PtZrFeO/C> PtCu5FeO/C> PtFeO/C> Pt/C görüldü. Katot elektrokatalizörü olarak PtCu5FeO/C katalizörü anot elektrokatalizörü için ise PtZrFeO/C katalizörü çok iyi bir aktivite gösterdi. Sentezlenen katalizörlerin elektrokimysal CV ölçümleri, morfolojik yapıları ve fiziksel özellikleri de FTIR, SEM-EDX, BET ve XRD analizleri de yapılarak değerlendirildi.
PEM fuel cells are the most powerful alternative to alleviate the problem of environmentally friendly power sources and eliminate the sustainability problem of other renewable energy sources. Commercialization of PEM fuel cell technology has been largely hindered by the high cost of Pt-based catalysts. To overcome these obstacles, it is possible to reduce Pt loading by using low-cost, electrically conductive metal-support interactive supporting materials and to use durable active catalysts. In this thesis study, FeO, Cu and Zr doped FeO nanoparticles in different percentages (1%, 5% and 10%) were synthesized using fig leaf extract with the green synthesis method. The synthesized nanoparticles were doped with platinum and activated carbon using the chemical reduction method and produced Pt-FeO/C, Pt-CuFeO/C, Pt-Cu5FeO/C, Pt-Cu10FeO/C, Pt-ZrFeO/C, Pt-Zr5FeO/C and Pt. -Zr10FeO/C catalysts were synthesized. The synthesized catalysts were used separately as anode and cathode electrocatalysts in the single-cell PEM fuel cell. The synthesized catalysts were studied at different cell temperatures (40, 50, 60 and 70 ºC) in PEM fuel cell cell applications and the cell temperatures at which the best activity was measured were determined. The gas flow rates given to feed the fuel cell were adjusted to 40 mL/min for oxygen and 20 mL/min for hydrogen to achieve 100% cell humidification. The activity and efficiency of the fuel cell cell were examined with the current density-voltage-power density polarization curves created at different temperatures. The power densities of the synthesized catalysts when used as cathode electrocatalysts at 70 ºC cell temperature range from PtCu5FeO/C > PtZrFeO/C> PtFeO/C> Pt/C, and when used as anode electrocatalysts at the same temperature, PtZrFeO/C> PtCu5FeO/C> PtFeO/C> Pt/ C was seen. PtCu5FeO/C catalyst showed very good activity as the cathode electrocatalyst and PtZrFeO/C catalyst as the anode electrocatalyst. Electrochemical CV measurements, morphological structures and physical properties of the synthesized catalysts were also evaluated by FTIR, SEM-EDX, BET and XRD analyses.
PEM fuel cells are the most powerful alternative to alleviate the problem of environmentally friendly power sources and eliminate the sustainability problem of other renewable energy sources. Commercialization of PEM fuel cell technology has been largely hindered by the high cost of Pt-based catalysts. To overcome these obstacles, it is possible to reduce Pt loading by using low-cost, electrically conductive metal-support interactive supporting materials and to use durable active catalysts. In this thesis study, FeO, Cu and Zr doped FeO nanoparticles in different percentages (1%, 5% and 10%) were synthesized using fig leaf extract with the green synthesis method. The synthesized nanoparticles were doped with platinum and activated carbon using the chemical reduction method and produced Pt-FeO/C, Pt-CuFeO/C, Pt-Cu5FeO/C, Pt-Cu10FeO/C, Pt-ZrFeO/C, Pt-Zr5FeO/C and Pt. -Zr10FeO/C catalysts were synthesized. The synthesized catalysts were used separately as anode and cathode electrocatalysts in the single-cell PEM fuel cell. The synthesized catalysts were studied at different cell temperatures (40, 50, 60 and 70 ºC) in PEM fuel cell cell applications and the cell temperatures at which the best activity was measured were determined. The gas flow rates given to feed the fuel cell were adjusted to 40 mL/min for oxygen and 20 mL/min for hydrogen to achieve 100% cell humidification. The activity and efficiency of the fuel cell cell were examined with the current density-voltage-power density polarization curves created at different temperatures. The power densities of the synthesized catalysts when used as cathode electrocatalysts at 70 ºC cell temperature range from PtCu5FeO/C > PtZrFeO/C> PtFeO/C> Pt/C, and when used as anode electrocatalysts at the same temperature, PtZrFeO/C> PtCu5FeO/C> PtFeO/C> Pt/ C was seen. PtCu5FeO/C catalyst showed very good activity as the cathode electrocatalyst and PtZrFeO/C catalyst as the anode electrocatalyst. Electrochemical CV measurements, morphological structures and physical properties of the synthesized catalysts were also evaluated by FTIR, SEM-EDX, BET and XRD analyses.
Açıklama
Fen Bilimleri Enstitüsü, Kimya Mühendisliği Ana Bilim Dalı
Anahtar Kelimeler
Kimya Mühendisliği, Chemical Engineering