A New Feature Selection Approach and Classification Technique for Current Intrusion Detection System

[ X ]

Tarih

2021

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Institute of Electrical and Electronics Engineers Inc.

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

These days, various devices including computers, smartphones, internet of things (IoT), and cloud services are using computer networks for data communications. As the computer network is being used extensively, it becomes the target of many attacks. It can be different attacks such as denial of service attack (DoS), remote to user attack (R2L), user to remote attack (U2R), and probing attack. To protect communication networks from network-based attacks, intrusion detection systems (IDSs) have been proposed in many studies. However, today IDSs are not good enough to detect new attack types in the communication networks. To increase the efficiency of the current IDSs, a subset of features needs to be obtained before performing the machine learning classifiers. In this study, a new feature selection method is proposed for current IDSs. In addition, the proposed method is combined with machine learning classifiers and tested on KDD '99 dataset and %99.81 accuracy rate was obtained. The obtained performance is pretty high to separate network attacks from the normal traffic. © 2021 IEEE

Açıklama

6th International Conference on Computer Science and Engineering, UBMK 2021 -- 15 September 2021 through 17 September 2021 -- Ankara -- 176826

Anahtar Kelimeler

Attacks detection, Feature engineering, Feature selection, Intrusion detection

Kaynak

Proceedings - 6th International Conference on Computer Science and Engineering, UBMK 2021

WoS Q Değeri

Scopus Q Değeri

N/A

Cilt

Sayı

Künye