Derin Öğrenme Modelleri ve Veri Ön İşleme Yöntemleri ile Çeltik Yaprak Hastalıklarının Erken Teşhisi

[ X ]

Tarih

2023

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Erişim Hakkı

info:eu-repo/semantics/openAccess

Özet

Son yıllarda tarım sektöründe, derin öğrenme temelli bilgisayar destekli sistemler büyük bir önem kazanmış ve farklı uygulama alanlarında etkili bir rol oynamıştır. Bu sistemler sadece hastalıkların erken teşhisine katkı sağlamakla kalmamış, aynı zamanda tarım profesyonellerine önemli bir destek sunmuştur. Bu bağlamda, bu çalışma çeltik yapraklarında mevcut hastalıkların erken teşhisinde derin öğrenme yöntemlerinin etkinliğini araştırmayı amaçlamaktadır. Bu araştırma için, 13 farklı çeltik hastalığına ait toplam 4160 görüntü içeren Paddy Doctor veri kümesi kullanılmıştır. Veri kümesi üzerinde beş farklı transfer öğrenme modeli titizlikle değerlendirilmiştir. Elde edilen sonuçlar, Xception modelinin %93,37'lik doğruluk oranı ile en üstün performansı gösterdiğini açıkça ortaya koymaktadır. Ayrıca, bu çalışma veri ön işleme ve veri artırma tekniklerini optimize etme konusuna da değinerek veri kümesini zenginleştirmeyi ve teşhis doğruluğunu artırmayı amaçlamıştır. Başarılı bulunan modelin çeltik yaprak hastalıklarını teşhis etmedeki performansı ayrıntılı bir şekilde değerlendirilmiştir. Bu değerlendirme sonucunda, modelin en başarılı olduğu hastalık sınıfları belirlenmiş ve aynı şekilde modelin en zorlandığı veya en düşük doğruluk oranına sahip hastalık sınıfları da tespit edilmiştir. Bu bulgular, çeltik hastalıklarının erken teşhisinde transfer öğrenme modellerinin potansiyelini vurgulayarak tarım sektöründe etkili otomatik teşhis sistemlerinin geliştirilmesine olanak tanımaktadır. Bu yaklaşım, tarım sektöründe mahsul verimini artırma ve pestisit kullanımını azaltma yolunda umut vadetmektedir. Ayrıca, daha sağlıklı ve sürdürülebilir tarım uygulamalarını teşvik etme odaklı bu araştırma, gelecekteki stratejilere de katkı sağlayabilir.

Açıklama

Anahtar Kelimeler

Xception, Paddy doctor, derin transfer öğrenme, Çeltik hastalıkları

Kaynak

Çukurova Üniversitesi Mühendislik Fakültesi dergisi

WoS Q Değeri

Scopus Q Değeri

Cilt

38

Sayı

3

Künye