Positive Integer Powers of One Type of Complex Tridiagonal Matrix

dc.contributor.authorOteles, Ahmet
dc.contributor.authorAkbulak, Mehmet
dc.date.accessioned2024-12-24T19:33:20Z
dc.date.available2024-12-24T19:33:20Z
dc.date.issued2014
dc.departmentSiirt Üniversitesi
dc.description.abstractIn this paper, we firstly present a general expression for the entries of the rth (r is an element of N) power of a certain n-square complex tridiagonal matrix, in terms of the Chebyshev polynomials of the first kind. Secondly, we obtain two complex factorizations for Fibonacci and Pell numbers. We also give some Maple 13 procedures in order to verify our calculations.
dc.identifier.endpage981
dc.identifier.issn0126-6705
dc.identifier.issn2180-4206
dc.identifier.issue4
dc.identifier.startpage971
dc.identifier.urihttps://hdl.handle.net/20.500.12604/8088
dc.identifier.volume37
dc.identifier.wosWOS:000343190600006
dc.identifier.wosqualityQ3
dc.indekslendigikaynakWeb of Science
dc.language.isoen
dc.publisherMalaysian Mathematical Sciences Soc
dc.relation.ispartofBulletin of The Malaysian Mathematical Sciences Society
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_20241222
dc.subjectTridiagonal matrices
dc.subjecteigenvalues
dc.subjecteigenvectors
dc.subjectJordan's form
dc.subjectChebyshev polynomials
dc.titlePositive Integer Powers of One Type of Complex Tridiagonal Matrix
dc.typeArticle

Dosyalar