A SARS-CoV-2 Fractional-Order Mathematical Model via the Modified Euler Method

[ X ]

Tarih

2022

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Mdpi

Erişim Hakkı

info:eu-repo/semantics/openAccess

Özet

This article develops a within-host viral kinetics model of SARS-CoV-2 under the Caputo fractional-order operator. We prove the results of the solution's existence and uniqueness by using the Banach mapping contraction principle. Using the next-generation matrix method, we obtain the basic reproduction number. We analyze the model's endemic and disease-free equilibrium points for local and global stability. Furthermore, we find approximate solutions for the non-linear fractional model using the Modified Euler Method (MEM). To support analytical findings, numerical simulations are carried out.

Açıklama

Anahtar Kelimeler

SARS-CoV-2, Banach mapping contraction principle, local stability, global stability, Modified Euler Method

Kaynak

Mathematical and Computational Applications

WoS Q Değeri

N/A

Scopus Q Değeri

Cilt

27

Sayı

5

Künye