Characteristics of sodium alginate-based hybrid nanofluid and darcy-forchheimer flow induced by starching surface with thermal radiation and Cattaneo–Christov heat flux model

dc.contributor.authorFarooq, Umar
dc.contributor.authorMaatki, Chemseddine
dc.contributor.authorKriaa, Karim
dc.contributor.authorHadrich, Bilel
dc.contributor.authorImran, Muhammad
dc.contributor.authorNoreen, Sobia
dc.contributor.authorWaqas, Hassan
dc.date.accessioned2024-12-24T19:10:08Z
dc.date.available2024-12-24T19:10:08Z
dc.date.issued2024
dc.departmentSiirt Üniversitesi
dc.description.abstractIn today's industrial age, one of the most pressing challenges is to find an efficient heat transfer fluid because common fluids don't provide efficient heating and cooling in industries. This paper aims to explore the flow and heat transfer characteristics of (SWCNT-Ag/ Sodium Alginate) and (MWCNT-Cu/ Sodium Alginate) based hybrid nanofluids in the presence of Cattaneo–Christov heat flux model and thermal radiation on a surface. To achieve this, we transform the modeled partial differential equations (PDEs) into ordinary differential equations (ODEs) using suitable similarity variables. These equations are then solved using MATLAB software (bvp4c) to illustrate the influence of important controlling parameters, presented in both tabular and graphical formats. It is noted that raising the Inertia coefficient parameter leads to a drop in the velocity distribution profile of the (SWCNT-Ag/ Sodium Alginate) and (MWCNT-Cu/ Sodium Alginate) based hybrid nanofluid. Enhancing the rotation parameter of (SWCNT-Ag/ Sodium Alginate) and (MWCNT-Cu/ Sodium Alginate) based hybrid nanofluid decreases the velocity distribution profile. The increasing values of the thermal radiation parameter and Biot number increased the thermal distribution profile while the fall down for the enhancing values of the melting parameter. The convergence ranges of emerged flow parameters are listed here(0.1<?<1.4),(0.1<?<0.4), (0.1<P<1.3),(0.1<Fr<1.2), (0.01<?1=?2<0.04), (0.4<Me<1.0),(0.1<Bi<2.2),(0.1<Rd<1.2), and (0.4<?t<1.0). The key and fascinating aspect of this innovative study is that the heat transfer rate increases for all the parameters involved, aligning with the fundamental goal of utilizing nanofluids in nanotechnology for their promising applications. © 2024 Elsevier B.V.
dc.description.sponsorshipDeanship of Scientific Research, Imam Mohammed Ibn Saud Islamic University, (IMSIU-RG23057); Deanship of Scientific Research, Imam Mohammed Ibn Saud Islamic University
dc.identifier.doi10.1016/j.jocs.2024.102209
dc.identifier.issn1877-7503
dc.identifier.scopus2-s2.0-85185180367
dc.identifier.scopusqualityQ1
dc.identifier.urihttps://doi.org10.1016/j.jocs.2024.102209
dc.identifier.urihttps://hdl.handle.net/20.500.12604/3952
dc.identifier.volume76
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherElsevier B.V.
dc.relation.ispartofJournal of Computational Science
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_20241222
dc.subject(Ag
dc.subjectBvp4c
dc.subjectCattaneo–Christov heat flux model
dc.subjectCNTs) Nanoparticles
dc.subjectCu
dc.subjectHybrid nanofluid
dc.subjectShooting method
dc.subjectSodium Alginate based fluid
dc.subjectStarching surface
dc.subjectThermal radiation
dc.subjectThree dimensional Flow
dc.titleCharacteristics of sodium alginate-based hybrid nanofluid and darcy-forchheimer flow induced by starching surface with thermal radiation and Cattaneo–Christov heat flux model
dc.typeArticle

Dosyalar