Adaptive recursive least squares method for parameter estimation of autoregressive models
dc.contributor.author | Javed, Shazia | |
dc.contributor.author | Nazir, Ghida | |
dc.contributor.author | Chaudhry, Nazir Ahmad | |
dc.contributor.author | Akgul, Ali | |
dc.contributor.author | Tabassum, Muhammad Farhan | |
dc.date.accessioned | 2024-12-24T19:30:05Z | |
dc.date.available | 2024-12-24T19:30:05Z | |
dc.date.issued | 2023 | |
dc.department | Siirt Üniversitesi | |
dc.description.abstract | The recursive least squares (RLS) methods are extremely used to find the solutions of problems in many areas, such as communication, signal processing, optimisation and control. In this paper the RLS algorithm is modified for parameter estimation of regression models, such as the pseudo-linear ARMA (PS-ARMA) model and output error autoregressive (OEAR) model. The adaptive filtering technique with random input-output is used in the proposed recursive parameter estimation (RPE) algorithm to recursively predict the exact set of parameters for any regression model. The proposed method works by predicting an output signal that is adaptively improved to approximate the desired filter output. The experimental results are provided to prove the effectiveness of the proposed method. | |
dc.description.sponsorship | Lahore College for Women University, Lahore Pakistan | |
dc.description.sponsorship | The authors would like to acknowledge the support of the Lahore College for Women University, Lahore Pakistan for completion of this work | |
dc.identifier.doi | 10.1504/IJANS.2023.133733 | |
dc.identifier.endpage | 89 | |
dc.identifier.issn | 1752-2862 | |
dc.identifier.issn | 1752-2870 | |
dc.identifier.issue | 1 | |
dc.identifier.startpage | 72 | |
dc.identifier.uri | https://doi.org/10.1504/IJANS.2023.133733 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12604/7381 | |
dc.identifier.volume | 4 | |
dc.identifier.wos | WOS:001079763300006 | |
dc.identifier.wosquality | Q4 | |
dc.indekslendigikaynak | Web of Science | |
dc.language.iso | en | |
dc.publisher | Inderscience Enterprises Ltd | |
dc.relation.ispartof | International Journal of Applied Nonlinear Science | |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | |
dc.rights | info:eu-repo/semantics/closedAccess | |
dc.snmz | KA_20241222 | |
dc.subject | adaptive filter | |
dc.subject | autoregressive model | |
dc.subject | parameter estimation | |
dc.subject | random signals | |
dc.title | Adaptive recursive least squares method for parameter estimation of autoregressive models | |
dc.type | Article |