Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Orak, Ceren" seçeneğine göre listele

Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
  • [ X ]
    Öğe
    Enhanced catalytic performance of Pd/PMAc-g-CNT composite for water splitting and supercapacitor applications
    (Springer Heidelberg, 2024) Hansu, Tulin Avci; Kaya, Sefika; Caglar, Aykut; Akdemir, Murat; Kivrak, Hilal Demir; Orak, Ceren; Horoz, Sabit
    In this study, we explore the multifaceted applications of poly(methyl acrylate) (PMAc)-based composites, specifically focusing on their use as an efficient electrocatalyst for water splitting and a high-capacity supercapacitor. After a synthesis step, a characterization study (SEM, TEM, XRD, and Raman spectroscopy) was performed, and based on TEM results, a consistent pattern of small, uniform, and narrowly distributed Pd NPs within the range of 5-10 nm was observed. Also, other analyses confirmed the successful synthesis of PMAc-based composites. Through meticulous experimentation, the electrocatalytic performance of Pd/PMAc-graphene-carbon nanotube (Pd/PMAc-g-CNT) composites was evaluated against that of traditional Pd/PMAc catalysts. Tafel slope analysis was conducted to assess the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) efficiencies, where Pd/PMAc-g-CNT composites demonstrated significantly lower Tafel slopes of 274.53 mV dec(-1) for OER and 389.91 mV dec(-1) for HER. This indicates a superior electrocatalytic activity, enhancing the water splitting process. Furthermore, the same composite showcased an impressive specific capacitance of 132.3 F g(-1) at a current density of 0.5 A/g, markedly surpassing the performance of the Pd/PMAc catalyst. This exceptional capacitance underlines its potential as a high-efficiency energy storage material. The novelty of this research lies in the synergistic integration of PMAc with graphene and carbon nanotubes to fabricate a dual-functional material. This composite not only excels in electrochemical catalysis for energy conversion but also demonstrates remarkable energy storage capabilities. The Pd/PMAc-g-CNT composite, therefore, emerges as a promising candidate for advancing supercapacitor technology and the electrocatalytic efficiency of water splitting, highlighting its dual utility in renewable energy systems.
  • [ X ]
    Öğe
    Integrated Catalytic and Energy Storage Performance of Grass Waste Derived Ni-Based Catalyst
    (Springer Heidelberg, 2024) Karakas, Duygu Elma; Horoz, Sabit; Durap, Feyyaz; Orak, Ceren; Kaya, Mustafa
    This study focuses on the optimization and characterization of a grass waste-derived catalyst, GW-Ni-Cat, for hydrogen generation via NaBH4 methanolysis, as well as its application in supercapacitors. Optimization experiments were conducted to determine the optimal conditions for acid concentration, metal concentration, carbonization temperature, and carbonization time. The catalyst was characterized using various techniques including FTIR, XRD, SEM, TEM, BET, and ICP-OES. Performance experiments demonstrated the catalyst's efficiency in hydrogen generation, with key factors such as catalyst amount, NaBH4 concentration, and temperature influencing the reaction kinetics. Reusability tests showed the catalyst's stability over multiple cycles. Electrochemical characterization revealed the suitability of GW-Ni-Cat as an electrode material for supercapacitors, with high specific capacitance values. Comparison with other bio-based supercapacitors demonstrated the superior performance of GW-Ni-Cat. Overall, this study presents GW-Ni-Cat as a versatile and efficient material for both hydrogen generation and energy storage applications.

| Siirt Üniversitesi | Kütüphane | Açık Bilim Politikası | Açık Erişim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Siirt Üniversitesi Kütüphane ve Dokümantasyon Daire Başkanlığı, Siirt, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim