Yazar "Myrzakulov, Ratbay" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe The construction of exact solution and explicit propagating optical soliton waves of Kuralay equation by the new extended direct algebraic and Nucci's reduction techniques(Taylor & Francis Inc, 2024) Faridi, Waqas Ali; Myrzakulova, Zhaidary; Myrzakulov, Ratbay; Akguel, Ali; Osman, M. S.The aim of this paper is to investigate the integrable motion of induced curves using the Kuralay equation, which is a complex integrable coupled system. The soliton solutions derived from Kuralay equation are supposed to represent the most advanced research in several significant phenomena, including optical fibers, nonlinear optics, and ferromagnetic materials. Analytical methods are used to obtain traveling wave solutions for this model as the Cauchy problem cannot be addressed by the inverse scattering transform. In order to find the solitary wave solutions, the new extended direct algebraic and Nucci's reduction approaches are taken over. As a result, the new extended direct algebraic method provides singular, mixed singular, periodic, mixed trigonometric, complex combo, trigonometric, mixed hyperbolic, plane, and combined bright-dark soliton solutions. The Nucci's reduction technique develops the first integral of differential equation to discuss the conservation and exact solutions. To ensure the sensitivity of the study, the effect of waves on the propagation of solitons and the sensitivity of the model is examined. To illustrate how the fitting values of the system parameters may be utilized to anticipate the behavioral reactions to pulse propagation, the resulting solutions are visually shown in 2D and 3D charts.Öğe The formation of solitary wave solutions and their propagation for Kuralay equation(Elsevier, 2023) Faridi, Waqas Ali; Abu Bakar, Muhammad; Myrzakulova, Zhaidary; Myrzakulov, Ratbay; Akgul, Ali; El Din, Sayed M.In this paper, the main motive is to mathematical explore the Kuralay equation, which find applications in various fields such as ferromagnetic materials, nonlinear optics, and optical fibers. The objective of this study is to investigate different types of soliton solutions and analyze the integrable motion of induced space curves. This article appropriates the traveling wave transformation allowing the partial differential equation to be changed into an ordinary differential equation. To establish these soliton solutions, the study employs the new auxiliary equation method. As an outcome, a numerous types of soliton solutions like, Periodic pattern with anti-peaked crests and anti-troughs, singular solution, mixed complex solitary shock solution, mixed singular solution, mixed shock singular solution, mixed trigonometric solution, mixed periodic, periodic solution and mixed hyperbolic solution obtain via Mathematica. In order to visualize the graphical propagation of the obtained soliton solutions, 3D, 2D, and contour graphics are generated by choosing appropriate parametric values. The impact of parameter w is also graphically displayed on the propagation of solitons.