Yazar "Kutlu, Hatice Mehtap" seçeneğine göre listele
Listeleniyor 1 - 8 / 8
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Biogenic Synthesized Bare and Boron-Doped Copper Oxide Nanoparticles from Thymbra spicat ssp. spicata: In Silico and In Vitro Studies(Springer/Plenum Publishers, 2024) Cengiz, Mustafa; Baytar, Orhan; Sahin, Omer; Kutlu, Hatice Mehtap; Ayhanci, Adnan; Sezer, Canan Vejselova; Gur, BahriThe biosynthesis technique and biogenic copper oxide nanoparticles (CuONPs) are commonly used in a variety of applications including medicine. Bare (CuONPs) and boron-doped copper oxide nanoparticles (B/CuONPs) were produced via the green synthesis method using Thymbra spicat ssp. spicata due to their nontoxic, coast effective and facile properties. The nanoparticles were characterized by using X-ray diffraction, fourier transform infrared, UV-visible spectroscopy, transmission electron microscopy, and Scanning electron microscopy with Energy Dispersive X-ray spectroscopy analysis. The produced nanoparticles performed antibacterial activity against human pathogenic organisms of both Gram-negative (E. coli) and Gram-positive (S. aureus) bacteria by using the microdilution technique. B/CuONPs showed high activity on Gram-positive bacteria, while CuONPs showed high activity on Gram-negative bacteria. The cytotoxic effect synthesized CuONPs and B/CuONPs were evaluated against human hepatocarcinoma (HepG2) cells by using MTT, Annexin-V, Caspase-3/7, and confocal microscopic evaluations. Moreover, the in-silico results have shown for the first time that the active role in the Caspase-3/7 step of the triggered apoptosis pathway is due to the activity of Caspase-7. The results indicated that the biogenic CuONPs and B/CuONPs exerted potential anti-cancer and anti-bacterial activity on HepG2 and S. aureus and E. coli that imply to remarkable biological activity. The green synthesized nanoparticles have clearly proposed promising biogenic nanomaterials for biomedical treatments.Öğe A comparative study on the therapeutic effects of silymarin and silymarin-loaded solid lipid nanoparticles on D-GaIN/TNF-?-induced liver damage in Balb/c Mice(2014-12-25) Cengiz, Mustafa; Kutlu, Hatice Mehtap; Burukoglu, Dilek; Ayhanci, AdnanNanostructure mediated drug delivery is known to have a potential to improve drug bioavailability, apart from fostering release deviation of drug molecules and enabling precision drug targeting. Solid lipid nanoparticles (SLNs) have drawn great deal of the attention of scientists in ?nding a solution to minimize pharmaceutic limitations of the drugs used. Silymarin(Sm)has so far been used for treating diverse liver and gall bladder disorders, such as cirrhosis, hepatitis, and jaundice, and for protecting the liver against poisoning from chemical and environmental toxins on account of its antihepatotoxic and antioxidative properties. The present study aims to develop a novel silymarin-loaded solid lipid nanoparticle (SmloadedSLN) system with enhanced bioavailability and with an ability to provide excellent hepatic protection for poorly water-soluble drugs. Based upon our investigation results with apoptotic markers, PCNA and light microscopic ?ndings, it can be concluded that Sm-loaded SLN signi?cantly reduced D-GaIN/TNF?-induced hepatotoxicity, which suggested improved bioactivity compared to Sm. In conclusion, Sm-loaded SLN could be a useful system for the delivery of poorly water-soluble Sm, apart from providing favourable hepatic protection.Öğe Escin attenuates oxidative damage, apoptosis and lipid peroxidation in a model of cyclophosphamide-induced liver damage(Taylor & Francis Ltd, 2022) Cengiz, Mustafa; Kutlu, Hatice Mehtap; Peker Cengiz, Betul; Ayhanci, AdnanTo investigate the effects of escin (ES) on acute damage induced by alkylating agent, experimental rats were injected with cyclophosphamide (CPM) to cause liver damage. The animals were divided into four groups: Control Group, CPM (200 mg/kg), ES (10 mg/kg), CPM, and ES Groups. Immunohistopathological, hepatic histopathological, and biochemical changes were analyzed. The activities of aspartate aminotransferase (AST), alanine aminotransferase (ALT), lactate dehydrogenase (LDH), malondyaldehyde (MDA), glutathion (GSH), total oxidant status (TOS) and total antioxidant status (TAS) in serum were all determined. Serum and immunohistopathology analysis revealed that MDA, ALT, AST, LDH, TOC and OSI, caspase-3 and Bax levels had increased while GSH, TAC, Bcl- 2 and OSI levels decreased in CPM Group when compared to Control Group. These findings appear to account for the severe damage detected. In the CPM + ES treated group, positive improvements were found in biochemical parameters as well as in cell-death and tissue-related damage parameters.The results show that ES considerably protects the rat liver against CPM-induced hepatotoxicity thanks to because of its anti-oxidant and anti-apoptotic properties.Öğe Green biosynthesis of selenium and zinc oxide nanoparticles using whole plant extract of Rheum ribes: Characterization, anticancer, and antimicrobial activity(Elsevier, 2024) Cengiz, Mustafa; Gur, Bahri; Sezer, Canan Vejselova; Baytar, Orhan; Sahin, Omer; Ayhanci, Adnan; Kutlu, Hatice MehtapScientists are becoming interested in nanomedicine as a potential new approach to cancer detection and therapy in the twenty-first century. This paper presents the first investigation of the anticancer and antibacterial properties of selenium (Se) and zinc oxide (ZnO) nanoparticles obtained from Rheum ribes plant extract by a green synthesis method. Morphological and spectroscopic characterization of the synthesized nanoparticles was performed using transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), ultraviolet-visible (UV-Vis), which is a useful and straightforward technique for the preliminary characterisation of nanoparticles, dynamic light scattering (DLS) and X-ray diffraction (XRD) analysis. The size of the nanoparticles was determined to be 33 nm for Se-Nps and 32.8 nm for ZnO-Nps. The anticancer activity was assessed by the use of MTT, annexin V, caspase 3/7, and confocal microscopy imaging techniques. ZnO-Nps and Se-Nps were found to have significant antibacterial activity with MIC values for Escherichia coli (0.7 mu g/mL, 0.63 mu g/mL), and Staphylococcus aureus (1.56 mu g/mL and 1.1 mu g/mL). Furthermore, the antibacterial activity and the mechanism of action of the nanoparticles on E. coli and S. aureus bacteria were evaluated using microdilution and disc diffusion methods. In addition, the antiproliferative properties of ZnO-Np and Se-Np significantly suppressed the growth of A549 cells during a 24-hour incubation period (IC50 18.89 mu g/mL ve 23.88 mu g/mL). The results of the anti-cancer and anti-bacterial activity of the present study suggest that certain concentrations of Se-Np and ZnO-Np could be useful for pharmacological applications in cancer treatment and for coating surfaces for sterilization of medical equipment in healthcare settings, particularly in intensive care units.Öğe Molecular docking analyses of Escin as regards cyclophosphamide-induced cardiotoxicity: In vivo and in Silico studies(Academic Press Inc Elsevier Science, 2021) Gur, Fatma; Cengiz, Mustafa; Kutlu, Hatice Mehtap; Cengiz, Betul Peker; Ayhanci, AdnanThis study aims to investigate whether Escin (ES) can protect against Cyclophosphamide (CPM)-induced cardiac damage. The experimental rats were categorized as Control, CPM (200 mg/kg), ES (10 mg/kg), and CPM + ES Groups, each having 6 members. Their heart tissues were stained with Hematoxylin and Eosin and the structural changes were investigated under the light microscope. The biochemical markers of ischemia modified albumin (IMA), creatine kinase (CK-MB), antioxidant activity indicators Catalase (CAT), and superoxide dismutase (SOD) activities were measured using blood samples. Besides, the effects of CPM, ES, and CPM + ES upon CAT and SOD activities were shown via molecular docking studies. In the Single-Dose CPM group, CK-MB and IMA levels significantly increased while SOD and CAT levels significantly decreased. However, the heart tissues were damaged. CK-MB and IMA levels significantly decreased in CP+ ES Group. On the other hand, SOD, and CAT levels significantly increased and reduced the damage remarkably. Our findings showed that ES treatment successfully reduced the toxic effects upon the rats. The conclusion is that ES treatment can help protect the heart tissue against CPM-induced toxicity. Both in-vivo results and molecular modeling studies showed that the negative effects of CPM upon SOD activity were bigger than that of CAT.Öğe Potential therapeutic effects of silymarin and silymarin-loaded solid lipid nanoparticles on experimental kidney damage in BALB/c mice: biochemical and histopathological evaluation(2016-06-21) Cengiz, Mustafa; Ayhanci, Adnan; Kutlu, Hatice Mehtap; Musmul, AhmetSilymarin (Sm) is widely used in treating diseases that affect organs such as the liver, kidney, and gallbladder thanks to its antioxidative, renoprotective, antihepatotoxic, and anticarcinogenic properties. However, this substance is poorly solved in water and tends to decompose in the intestine, its bioavailability decreasing before it can show real effect. With these limitations in mind, the present study aims to enhance the poor bioavailability of Sm by forming Sm-loaded solid lipid nanoparticles (Sm-SLNs) using the hot homogenization method. A characterization process was undertaken to determine possible impact of Sm on experimental kidney damage. Our biochemical and light microscopic results suggest that the group that received Sm-SLNs for the treatment of D-GalN/ TNF-?–induced experimental kidney damage showed significantly more improvement than the group that received commercially available Sm. In conclusion, Sm-loaded SLN may be a useful system for the delivery of poorly water-soluble Sm and may also provide renoprotection.Öğe Potential therapeutic effects of silymarin and silymarin-loaded solid lipidnanoparticles on experimental kidney damage in BALB/c mice: biochemical and histopathological evaluation(2016) Cengiz, Mustafa; Ayhancı, Adnan; Kutlu, Hatice Mehtap; Musmul, AhmetSilymarin (Sm) is widely used in treating diseases that affect organs such as the liver, kidney, and gallbladder thanks to its antioxidative, renoprotective, antihepatotoxic, and anticarcinogenic properties. However, this substance is poorly solved in water and tends to decompose in the intestine, its bioavailability decreasing before it can show real effect. With these limitations in mind, the present study aims to enhance the poor bioavailability of Sm by forming Sm-loaded solid lipid nanoparticles (Sm-SLNs) using the hot homogenization method. A characterization process was undertaken to determine possible impact of Sm on experimental kidney damage. Our biochemical and light microscopic results suggest that the group that received Sm-SLNs for the treatment of D-GalN/TNF-α-induced experimental kidney damage showed significantly more improvement than the group that received commercially available Sm. In conclusion, Sm-loaded SLN may be a useful system for the delivery of poorly water-soluble Sm and may also provide renoprotection.Öğe Protective effects of ellagic acid in D-galactosamine-induced kidney damage in rats(2016-12-12) Ayhanci, Adnan; Cengiz, Mustafa; Kutlu, Hatice Mehtap; Vejselova, DjananD-Galactosamine (D-GalN), which is an established experimental toxin, primarily causes liver injury by the generation of free radicals and depletion of UTP nucleotides. D-GalN intoxication also induces renal dysfunction thus, renal failure is often associated with the end-stage of the liver damage. We have investigated both preventive and curative effects of ellagic acid (EA) in this study. EA treatment at a gavage dose of 20 mg/kg body weight was administered before and after intraperitoneal (i.p.) injection of D-GalN at a dose of 750 mg/kg. Tissue and blood samples of animals were collected for morphological and biochemical evaluations. Our study results suggest that EA treatment both prior to and after the toxin administration successfully altered the toxic effects on the rats. Moreover, pre-treatment of EA was more protective than post-treatment indicated by histopathological and biochemical values. In conclusion, EA treatment both before and after D-GalN intoxication could protect kidney tissues against D-GalN induced oxidative stress.