Yazar "Kaya, M." seçeneğine göre listele
Listeleniyor 1 - 6 / 6
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe A critical review of pretreatment technologies to enhance anaerobic digestion and energy recovery(Elsevier Sci Ltd, 2020) Atelge, M. R.; Atabani, A. E.; Banu, J. Rajesh; Krisa, David; Kaya, M.; Eskicioglu, Cigdem; Kumar, GopalakrishnanBiogas production from different waste resources still has limitations due to its complex structure and slowly biodegradable nature. To improve methane yield and anaerobic digestion performance, various substrate pretreatment methods have been suggested. This paper reviews the latest trends, progress, and research achievements about pretreatment technologies to improve anaerobic digestion efficiency. The pretreatment techniques are divided into four main groups which are physical, chemical, biological, and combined. The effect of inhibitor formation during the pretreatment process is discussed. The energy performance, economics, and environmental impact of these pretreatment technologies are revealed. This study concludes with future trends and emphasizes the necessity of pretreatment methods.Öğe A double-functional carbon material as a supercapacitor electrode and hydrogen production: Cu-doped tea factory waste catalyst(Springer, 2021) Ozarslan, S.; Atelge, M. R.; Kivrak, Hilal Demir; Horoz, Sabit; Yavuz, Cenk; Kaya, M.; Unalan, S.In the present study, our main aim is to show that the first synthesized metal-doped tea factory waste (TFW) catalyst can be used in both hydrogen production and supercapacitor application. In this context, TFW catalyst doped with copper (Cu) (TFW-Cu) was synthesized for methanolysis of NaBH4 and supercapacitor measurement. In the presence of four different parameters (metal type, metal amount, carbonization temperature, and carbonization time), methanolysis experiments of NaBH4 were performed and the catalyst with the maximum hydrogen production rate (HPR) was determined. As a result, it was determined that the 30% Cu-doped TFW (TFW-30%Cu) catalyst had a maximum HPR at a carbonization temperature of 300 degrees C and a carbonization time of 60 min compared to other substances. As a result of the methanolysis experiments performed in the presence of TFW-30%Cu catalyst, the maximum HPR and activation energy were determined as 9475 mL (min.g)(-1) and 13.02 kJ mol(-1), respectively. In supercapacitor application, the capacitance of the electrodes in the presence of TFW-30%Cu was calculated as 7-19.9 F.(g)(-1). Thus, it is expected that the synthesized catalyst will make a promising contribution in both energy storage and energy production areas-especially for distributed generation systems operating in national networks.Öğe Anaerobic co-digestion of oil-extracted spent coffee grounds with various wastes: Experimental and kinetic modeling studies(Elsevier Sci Ltd, 2021) Atelge, M. R.; Atabani, A. E.; Abut, Serdar; Kaya, M.; Eskicioglu, Cigdem; Semaan, Georgeio; Lee, ChangsooThe effect of oil extraction from spent coffee grounds as a pre-treatment strategy prior to anaerobic digestion besides assessing the feasibility of defatted spent coffee grounds co-digestion with spent tea waste, glycerin, and macroalgae were examined. Mesophilic BMP tests were performed using defatted spent coffee grounds alongside four co-substrates in the ratio of 25, 50, and 75%, respectively. The highest methane yield was obtained with the mono-digestion of defatted spent coffee grounds with 336 +/- 7 mL CH4/g VS and the yield increased with the increase in the mass ratio of defatted spent coffee grounds during co-digestion. Moreover, defatted spent coffee grounds showed the highest VS and TS removal at 35.5% and 32.1%, respectively and decreased thereafter. Finally, a linear regression model for the interaction effects between substrates was demonstrated and showed that distinctly mixing defatted spent coffee grounds, spent coffee grounds, and spent tea waste outperforms other triple mixed substrates.Öğe Carbon molecular sieve production from defatted spent coffee ground using ZnCl2 and benzene for gas purification(Elsevier Sci Ltd, 2020) Kaya, M.; Atelge, M. R.; Bekirogullari, M.; Eskicioglu, Cigdem; Atabani, A. E.; Kumar, Gopalakrishnan; Yildiz, Y. S.The aim of the current study is to manufacture molecular sieve from the defatted spent coffee ground. The defatted spent coffee ground for the specified particle size (100 mu m) was chemically activated with different agents (ZnCl2, H3PO4, KOH) and then carbonized at different temperatures (400-900 degrees C). A thorough characterization of the produced activated carbon was performed and activated carbons with the highest BET surface area were subsequently used to produce carbon molecular sieve. The surface modification was performed with benzene vapor at different temperatures (600-900 degrees C) and different combustion times (30-90 min.). In addition to the BET analysis, SEM, TGA and FT-IR analysis were also undertaken. The results obtained through characterizations showed that the pore diameters of carbon molecular sieve produced from defatted spent coffee ground varied from 2 to 4 angstrom. To conclude, the results suggest that the fabricated carbon molecular sieve can be used for the removal of impurities such as CH4, CO2, NOx and other impurities in natural and biogas considering the porosity of the sieves.Öğe Modeling and simulation of co-digestion performance with artificial neural network for prediction of methane production from tea factory waste with co-substrate of spent tea waste(Elsevier Sci Ltd, 2021) Ozarslan, Saliha; Abut, Serdar; Atelge, M. R.; Kaya, M.; Unalan, S.The production of biofuel from waste has become an important topic for waste management and reducing its environmental hazard. Tea factory waste is a strong candidate due to its availability and sourceability. This study aimed to reveal the biochemical methane potential (BMP) of tea factory waste (TFW) and spent tea waste (STW). Additionally, the results revealed that both substrates had high biodegradability due to high VS removal. The BMP tests took 49 days under mesophilic conditions with a batch reactor and the cumulative methane yields were 249 +/- 3, and 261 +/- 8 mL CH4/g VS for TFW and STW, respectively. According to prediction data with the selected ANN model, which was 50 hidden layer sizes, trained with Bayesian Regularization algorithm, the maximum cumulative specific methane yield of the co-digestion was simulated as 468.43 mL CH4/g VS when the ratio of 65 and 35% (w/w by VS) of TFW and STW, respectively. The predicted methane yield for co-substrates was 183% higher than mono substrates. This result revealed that TFW can be a good candidate for biogas production as biofuel for not only its availability and sourceability but also the synergistic effect possible for codigestion.Öğe The effect of microwave irradiation on a Co-B-based catalyst for hydrogen generation by hydrolysis of NaBH4 solution(Bellwether Publishing, Ltd., 2015) Şahin, O.; Kaya, M.; Izgi, M.S.; Saka, C.A Co-B-based catalyst was prepared under microwave irradiation for hydrogen generation by hydrolysis of NaBH4 solution. The activity of Co-B catalyst for hydrogen generation was studied in comparison with another Co-B catalyst prepared by the known methods. The results show that Co-B catalyst reduced prepared under microwave irradiation was quick and was completed in only 17 min, while the Co-B catalyst produced in a known method was slow and was completed in 27 min. The hydrogen generation from the hydrolys of NaBH4 with Co-B catalyst was investigated depending on NaBH4 and NaOH concentrations in solution, temperature, microwave applying time, and microwave applying power. Hydrolysis kinetics of NaBH4 were investigated at a temperature range of 30-50°C and zero-order kinetics were applied to the obtained data. Copyright © Taylor & Francis Group, LLC.