Yazar "Fatima, Umbreen" seçeneğine göre listele
Listeleniyor 1 - 3 / 3
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe A finite difference scheme to solve a fractional order epidemic model of computer virus(Amer Inst Mathematical Sciences-Aims, 2023) Iqbal, Zafar; Rehman, Muhammad Aziz-ur; Imran, Muhammad; Ahmed, Nauman; Fatima, Umbreen; Akgul, Ali; Rafiq, MuhammadIn this article, an analytical and numerical analysis of a computer virus epidemic model is presented. To more thoroughly examine the dynamics of the virus, the classical model is transformed into a fractional order model. The Caputo differential operator is applied to achieve this. The Jacobian approach is employed to investigate the model's stability. To investigate the model's numerical solution, a hybridized numerical scheme called the Grunwald Letnikov nonstandard finite difference (GL-NSFD) scheme is created. Some essential characteristics of the population model are scrutinized, including positivity boundedness and scheme stability. The aforementioned features are validated using test cases and computer simulations. The mathematical graphs are all detailed. It is also investigated how the fundamental reproduction number R0 functions in stability analysis and illness dynamics.Öğe A fractal fractional model for computer virus dynamics(Pergamon-Elsevier Science Ltd, 2021) Akgul, Ali; Fatima, Umbreen; Iqbal, Muhammad Sajid; Ahmed, Nauman; Raza, Ali; Iqbal, Zafar; Rafiq, MuhammadThe gist behind this study is to extend the classical computer virus model into fractal fractional model and subsequently to solve the model by Atangana-Toufik method. This method solve nonlinear model under consideration very efficiently. We use the Mittag-Leffler kernels on the proposed model. Atangana-Baleanu integral operator is used to solve the set of fractal-fractional expressions. In this model, three types of equilibrium points are described i.e trivial, virus free and virus existing points. These fixed points are used to establish some standard results to discuss the stability of the system by calculating the Jacobian matrices at these points. Routh-Hurwitz criteria is used to verify that the system is locally asymptotically stable at all the steady states. The emphatic role of the basic reproduction number R-0 is also brought into lime light for stability analysis. Sensitivity analysis of R-0 is also discussed. Optimal existence and uniqueness of the solution is the nucleus of this study. Computer simulations and patterns and graphical patterns illustrate reliability and productiveness of the proposed method. (C) 2021 Elsevier Ltd. All rights reserved.Öğe Optimal existence of fractional order computer virus epidemic model and numerical simulations(Wiley, 2021) Akgul, Ali; Iqbal, Muhammad Sajid; Fatima, Umbreen; Ahmed, Nauman; Iqbal, Zafar; Raza, Ali; Rafiq, MuhammadAim of this article is to analyze the fractional order computer epidemic model. To this end, a classical computer epidemic model is extended to the fractional order model by using the Atangana-Baleanu fractional differential operator in Caputo sense. The regularity condition for the solution to the considered system is described. Existence of the solution in the Banach space is investigated and some benchmark results are presented. Steady states of the system is described and stability of the model at these states is also studied, with the help of Jacobian matrix method. Some results for the local stability at disease free equilibrium point and endemic equilibrium point are presented. The basic reproduction number is mentioned and its role on stability analysis is also highlighted. The numerical design is formulated by applying the Atangana-Baleanu integral operator. The graphical solutions are also presented by computer simulations at both the equilibrium points.