Yazar "Ahmed, Nauman" seçeneğine göre listele
Listeleniyor 1 - 20 / 50
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe A finite difference scheme to solve a fractional order epidemic model of computer virus(Amer Inst Mathematical Sciences-Aims, 2023) Iqbal, Zafar; Rehman, Muhammad Aziz-ur; Imran, Muhammad; Ahmed, Nauman; Fatima, Umbreen; Akgul, Ali; Rafiq, MuhammadIn this article, an analytical and numerical analysis of a computer virus epidemic model is presented. To more thoroughly examine the dynamics of the virus, the classical model is transformed into a fractional order model. The Caputo differential operator is applied to achieve this. The Jacobian approach is employed to investigate the model's stability. To investigate the model's numerical solution, a hybridized numerical scheme called the Grunwald Letnikov nonstandard finite difference (GL-NSFD) scheme is created. Some essential characteristics of the population model are scrutinized, including positivity boundedness and scheme stability. The aforementioned features are validated using test cases and computer simulations. The mathematical graphs are all detailed. It is also investigated how the fundamental reproduction number R0 functions in stability analysis and illness dynamics.Öğe A fractal fractional model for computer virus dynamics(Pergamon-Elsevier Science Ltd, 2021) Akgul, Ali; Fatima, Umbreen; Iqbal, Muhammad Sajid; Ahmed, Nauman; Raza, Ali; Iqbal, Zafar; Rafiq, MuhammadThe gist behind this study is to extend the classical computer virus model into fractal fractional model and subsequently to solve the model by Atangana-Toufik method. This method solve nonlinear model under consideration very efficiently. We use the Mittag-Leffler kernels on the proposed model. Atangana-Baleanu integral operator is used to solve the set of fractal-fractional expressions. In this model, three types of equilibrium points are described i.e trivial, virus free and virus existing points. These fixed points are used to establish some standard results to discuss the stability of the system by calculating the Jacobian matrices at these points. Routh-Hurwitz criteria is used to verify that the system is locally asymptotically stable at all the steady states. The emphatic role of the basic reproduction number R-0 is also brought into lime light for stability analysis. Sensitivity analysis of R-0 is also discussed. Optimal existence and uniqueness of the solution is the nucleus of this study. Computer simulations and patterns and graphical patterns illustrate reliability and productiveness of the proposed method. (C) 2021 Elsevier Ltd. All rights reserved.Öğe A Nonlinear Structure of a Chemical Reaction Model and Numerical Modeling with the New Aspect of Existence and Uniqueness(Mdpi, 2023) Shaikh, Tahira Sumbal; Akgul, Ali; Rehman, Muhammad Aziz-ur; Ahmed, Nauman; Iqbal, Muhammad Sajid; Shahid, Naveed; Rafiq, MuhammadIn this article, a nonlinear autocatalytic chemical reaction glycolysis model with the appearance of advection and diffusion is proposed. The occurrence and unicity of the solutions in Banach spaces are investigated. The solutions to these types of models are obtained by the optimization of the closed and convex subsets of the function space. Explicit estimates of the solutions for the admissible auxiliary data are formulated. An elegant numerical scheme is designed for an autocatalytic chemical reaction model, that is, the glycolysis model. The fundamental traits of the prescribed numerical method, for instance, the positivity, consistency, stability, etc., are also verified. The authenticity of the proposed scheme is ensured by comparing it with two extensively used numerical techniques. A numerical example is presented to observe the graphical behavior of the continuous system by constructing the numerical algorithm. The comparison depicts that the projected numerical design is more productive as compared to the other two schemes, as it holds all the important properties of the continuous model.Öğe Abundant soliton solution for the time-fractional stochastic Gray-Scot model under the influence of noise and M-truncated derivative(Springer, 2024) Baber, Muhammad Zafarullah; Ahmed, Nauman; Yasin, Muhammad Waqas; Ali, Syed Mansoor; Ali, Mubasher; Akgul, Ali; Hassani, Murad KhanIn this study, we investigate the abundant soliton solutions for the time-fractional stochastic Gray-Scot (TFSGS) model analytically. The Gray-Scot model is considered under the influence of M-truncated derivative and multiplicative time noise. This is a reaction-diffusion chemical concentration model that explains the irreversible chemical reaction process. The M-truncated derivative is applied for the fractional version while Brownian motion is taken in the sense of time noise. The novel mathematical technique is used to obtain the abundant families of soliton solutions. These solutions are explored in the form of shock, complicated solitary-shock, shock-singular, and periodic-singular types of single and combination wave structures. During the derivation, the rational solutions also appear. Moreover, we use MATHEMATICA 11.1 tools to plot our solutions and exhibit several three-dimensional, two-dimensional, and their corresponding contour graphs to show the fractional derivative and Brownian motion impact on the soliton solutions of the TFSGS model. We show that the TFDGS model solutions are stabilized at around zero by the multiplicative Brownian motion. These wave solutions represent the chemical concentrations of the reactants. The TFDGS model is considered to find the exact solitsary wave solutions under the random environment.The new MEDA method is used to obtain the different form of solutions.The different graphical behaviour are drawn to show the effects of noise and fractional derivatives.Öğe Acoustic wave structures for the confirmable time-fractional Westervelt equation in ultrasound imaging(Elsevier, 2023) Shaikh, Tahira Sumbal; Baber, Muhammad Zafarullah; Ahmed, Nauman; Iqbal, Muhammad Sajid; Akgul, Ali; El Din, Sayed M.In this study, the acoustic nonlinear equation namely the confirmable time-fractional Westervelt equation is under consideration analytically. This equation is applicable in the wave propagation of sound and high amplitude in medical imaging and therapy. The different types of wave structures are constructed for the confirmable time-fractional Westervelt equation by using two different techniques namely as, the modified exponential rational functional method and the modified G'/G(2)-model expansion method. With the help of these two techniques, we gain the different hyperbolic, exponential, periodic, and plane wave function solutions. Additionally, to show the graphical behavior of the wave structure, the 3D, 2D, and their corresponding contour representations are drawn by the different choices of parameters.Öğe Analysis of a diffusive chemical reaction model in three space dimensions(Taylor & Francis Inc, 2024) Ahmed, Nauman; Ali, Javaid; Akguel, Ali; Hamed, Y. S.; Aljohani, A. F.; Rafiq, Muhammad; Khan, IlyasThis article proposes an implicit operator splitting nonstandard finite difference (OS-NSFD) scheme for numerical treatment of two species in three space dimensions reaction-diffusion glycolysis model. Since, the unknown state variables exhibiting the concentrations of species in glycolysis models and they cannot be negative and obtaining their positive solutions is a challenging task. The established theoretical result ensures that our proposed OS-NSFD scheme is unconditionally convergent at equilibrium point and fulfills the condition of positivity of solutions on contrary to other methods. Further, we analyze the existence and uniqueness of the solution obtained for the underlying system. To highlight the effectiveness of OS-NSFD scheme we compare the simulation results of OS-NSFD scheme with three well-known existing operators splitting finite difference (FD) schemes, namely, forward Euler explicit, backward Euler implicit and Crank Nicolson splitting schemes. Many existing techniques provide with the restricted positive solutions which do not work always. These techniques are only applicable if certain conditions on the discretized parameters are considered otherwise; they produce negative solutions, which is not the physical feature of the real system. The current work bridges this gap by catering the unconditional positive solutions to the reaction diffusion models.Öğe Analysis of a Modified System of Infectious Disease in a Closed and Convex Subset of a Function Space with Numerical Study(Mdpi, 2023) Shaikh, Tahira Sumbal; Akgul, Ali; Rehman, Muhammad Aziz ur; Ahmed, Nauman; Iqbal, Muhammad Sajid; Shahid, Naveed; Rafiq, MuhammadIn this article, the transmission dynamical model of the deadly infectious disease namedEbola is investigated. This disease identified in the Democratic Republic of Congo (DRC) and Sudan(now South Sudan) and was identified in 1976. The novelty of the model under discussion is theinclusion of advection and diffusion in each compartmental equation. The addition of these two termsmakes the model more general. Similar to a simple population dynamic system, the prescribed modelalso has two equilibrium points and an important threshold, known as the basic reproductive number.The current work comprises the existence and uniqueness of the solution, the numerical analysis ofthe model, and finally, the graphical simulations. In the section on the existence and uniqueness ofthe solutions, the optimal existence is assessed in a closed and convex subset of function space. Forthe numerical study, a nonstandard finite difference (NSFD) scheme is adopted to approximate thesolution of the continuous mathematical model. The main reason for the adoption of this technique isdelineated in the form of the positivity of the state variables, which is necessary for any populationmodel. The positivity of the applied scheme is verified by the concept of M-matrices. Since thenumerical method gives a discrete system of difference equations corresponding to a continuoussystem, some other relevant properties are also needed to describe it. In this respect, the consistencyand stability of the designed technique are corroborated by using Taylor's series expansion and Von Neumann's stability criteria, respectively. To authenticate the proposed NSFD method, two other illustrious techniques are applied for the sake of comparison. In the end, numerical simulations are also performed that show the efficiency of the prescribed technique, while the existing techniques fail to do so.Öğe Analysis of multi-wave solitary solutions of (2+1)-dimensional coupled system of Boiti-Leon-Pempinelli(Nature Portfolio, 2024) Ghazanfar, Sidra; Ahmed, Nauman; Iqbal, Muhammad Sajid; Ali, Syed Mansoor; Akgul, Ali; Muhammad, Shah; Ali, MubasherThis work examines the (2+1)-dimensional Boiti-Leon-Pempinelli model, which finds its use in hydrodynamics. This model explains how water waves vary over time in hydrodynamics. We provide new explicit solutions to the generalized (2+1)-dimensional Boiti-Leon-Pempinelli equation by applying the Sardar sub-equation technique. This method is shown to be a reliable and practical tool for solving nonlinear wave equations. Furthermore, different types of solitary wave solutions are constructed: w-shaped, breather waved, chirped, dark, bright, kink, unique, periodic, and more. The results obtained with the variable coefficient Boiti-Leon-Pempinelli equation are stable and different from previous methods. As compared to their constant-coefficient counterparts, the variable-coefficient models are more general here. In the current work, the problem is solved using the Sardar Sub-problem Technique to produce distinct soliton solutions with parameters. Plotting these graphs of the solutions will help you better comprehend the model. The outcomes demonstrate how well the method works to solve nonlinear partial differential equations, which are common in mathematical physics.With the help of this method, we may examine a variety of solutions from significant physical perspectives.Öğe Analysis of the fractional diarrhea model with Mittag-Leffler kernel(Amer Inst Mathematical Sciences-Aims, 2022) Iqbal, Muhammad Sajid; Ahmed, Nauman; Akgul, Ali; Raza, Ali; Shahzad, Muhammad; Iqbal, Zafar; Rafiq, MuhammadIn this article, we have introduced the diarrhea disease dynamics in a varying population. For this purpose, a classical model of the viral disease is converted into the fractional-order model by using Atangana-Baleanu fractional-order derivatives in the Caputo sense. The existence and uniqueness of the solutions are investigated by using the contraction mapping principle. Two types of equilibrium points i.e., disease-free and endemic equilibrium are also worked out. The important parameters and the basic reproduction number are also described. Some standard results are established to prove that the disease-free equilibrium state is locally and globally asymptotically stable for the underlying continuous system. It is also shown that the system is locally asymptotically stable at the endemic equilibrium point. The current model is solved by the Mittag-Leffler kernel. The study is closed with constraints on the basic reproduction number R-0 and some concluding remarks.Öğe Analysis of the fractional polio model with the Mittag-Leffler kernels(Elsevier, 2023) Iqbal, Muhammad Sajid; Ahmed, Nauman; Akgul, Ali; Satti, Ammad Mehmood; Iqbal, Zafar; Raza, Ali; Rafiq, MuhammadThis article investigates the transmission of polio-virus disease in the human population. The classical model is considered for studying fatal disease. First of all, the model is converted into the fractal fractional epidemic model. Then, the existence of the solution for the said model is ensured with the help of the fixed point theory. Points of equilibria for the model are worked out. The basic reproduction number is described and its role in the disease communication and sta-bility of the model is examined by some standard results. Simulated graphs are also plotted to sup-port the pre-results and claims. Lastly, the findings of the study are presented.(c) 2022 THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Engineering, Alexandria University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/ licenses/by-nc-nd/4.0/).Öğe Analytical study of reaction diffusion Lengyel-Epstein system by generalized Riccati equation mapping method(Nature Portfolio, 2023) Ahmed, Nauman; Baber, Muhammad Z.; Iqbal, Muhammad Sajid; Annum, Amina; Ali, Syed Mansoor; Ali, Mubasher; Akgul, AliIn this study, the Lengyel-Epstein system is under investigation analytically. This is the reaction-diffusion system leading to the concentration of the inhibitor chlorite and the activator iodide, respectively. These concentrations of the inhibitor chlorite and the activator iodide are shown in the form of wave solutions. This is a reactionaeuro diffusion model which considered for the first time analytically to explore the different abundant families of solitary wave structures. These exact solitary wave solutions are obtained by applying the generalized Riccati equation mapping method. The single and combined wave solutions are observed in shock, complex solitary-shock, shock singular, and periodic-singular forms. The rational solutions also emerged during the derivation. In the Lengyel-Epstein system, solitary waves can propagate at various rates. The harmony of the system's diffusive and reactive effects frequently governs the speed of a single wave. Solitary waves can move at a variety of speeds depending on the factors and reaction kinetics. To show their physical behavior, the 3D and their corresponding contour plots are drawn for the different values of constants.Öğe Breather, lump, M-shape and other interaction for the Poisson-Nernst-Planck equation in biological membranes(Springer, 2024) Ceesay, Baboucarr; Ahmed, Nauman; Baber, Muhammad Zafarullah; Akguel, AliThis paper investigates a novel method for exploring soliton behavior in ion transport across biological membranes. This study uses the Hirota bilinear transformation technique together with the Poisson-Nernst-Planck equation. A thorough grasp of ion transport dynamics is crucial in many different scientific fields since biological membranes are important in controlling the movement of ions within cells. By extending the standard equation, the suggested methodology offers a more thorough framework for examining ion transport processes. We examine a variety of ion-acoustic wave structures using the Hirota bilinear transformation technique. The different forms of solitons are obtained including breather waves, lump waves, mixed-type waves, periodic cross-kink waves, M-shaped rational waves, M-shaped rational wave solutions with one kink, and M-shaped rational waves with two kinks. It is evident from these numerous wave shapes that ion transport inside biological membranes is highly relevant, and they provide important insights that may have an impact on various scientific disciplines, medication development, and other areas. This extensive approach helps scholars dig deeper into the complexity of ion transport, illuminating the complicated mechanisms driving this essential biological function. Additionally, to show the physical interpretations of these solutions we construct the 3D and their corresponding contour plots by choosing the different values of constants. So, these solutions give us the better physical behaviors.Öğe Comparative analysis of numerical with optical soliton solutions of stochastic Gross-Pitaevskii equation in dispersive media(Elsevier, 2023) Baber, Muhammad Zafarullah; Ahmed, Nauman; Yasin, Muhammad Waqas; Iqbal, Muhammad Sajid; Akgul, Ali; Riaz, Muhammad Bilal; Rafiq, MuhammadThis article deals with the stochastic Gross-Pitaevskii equation (SGPE) perturbed with multiplicative time noise. The numerical solutions of the governing model are carried out with the proposed stochastic non-standard finite difference (SNSFD) scheme. The stability of the scheme is proved by using the Von-Neumann criteria and the consistency is shown in the mean square sense. To seek exact solutions, we applied the Sardar subequation (SSE) and modified exponential rational functional (MERF) techniques. The exact solutions are constructed in the form of exponential, hyperbolic, and trigonometric forms. Finally, the comparison of the exact solutions with numerical solutions is drawn in the 3D and line plots for the different values of parameters.Öğe Comparisons of Numerical and Solitary Wave Solutions for the Stochastic Reaction-Diffusion Biofilm Model including Quorum Sensing(Mdpi, 2024) Baber, Muhammad Zafarullah; Ahmed, Nauman; Yasin, Muhammad Waqas; Iqbal, Muhammad Sajid; Akguel, Ali; Cordero, Alicia; Torregrosa, Juan R.This study deals with a stochastic reaction-diffusion biofilm model under quorum sensing. Quorum sensing is a process of communication between cells that permits bacterial communication about cell density and alterations in gene expression. This model produces two results: the bacterial concentration, which over time demonstrates the development and decomposition of the biofilm, and the biofilm bacteria collaboration, which demonstrates the potency of resistance and defense against environmental stimuli. In this study, we investigate numerical solutions and exact solitary wave solutions with the presence of randomness. The finite difference scheme is proposed for the sake of numerical solutions while the generalized Riccati equation mapping method is applied to construct exact solitary wave solutions. The numerical scheme is analyzed by checking consistency and stability. The consistency of the scheme is gained under the mean square sense while the stability condition is gained by the help of the Von Neumann criteria. Exact stochastic solitary wave solutions are constructed in the form of hyperbolic, trigonometric, and rational forms. Some solutions are plots in 3D and 2D form to show dark, bright and solitary wave solutions and the effects of noise as well. Mainly, the numerical results are compared with the exact solitary wave solutions with the help of unique physical problems. The comparison plots are dispatched in three dimensions and line representations as well as by selecting different values of parameters.Öğe Computational aspects of an epidemic model involving stochastic partial differential equations(World Scientific Publ Co Pte Ltd, 2023) Ahmed, Nauman; Yasin, Muhammad W.; Ali, Syed Mansoor; Akguel, Ali; Raza, Ali; Rafiq, Muhammad; Shar, Muhammad AliThis paper deals with the study of the reaction-diffusion epidemic model perturbed with time noise. It has various applications such as disease in population models of humans, wildlife, and many others. The stochastic SIR model is numerically investigated with the proposed stochastic backward Euler scheme and proposed stochastic implicit finite difference (IFD) scheme. The stability of the proposed methods is shown with Von Neumann criteria and both schemes are unconditionally stable. Both schemes are consistent with systems of the equations in the mean square sense. The numerical solution obtained by the proposed stochastic backward Euler scheme and solutions converges towards an equilibrium but it has negative and divergent behavior for some values. The numerical solution gained by the proposed IFD scheme preserves the positivity and also solutions converge towards endemic and disease-free equilibrium. We have used two problems to check our findings. The graphical behavior of the stochastic SIR model is much adjacent to the classical SIR epidemic model when noise strength approaches zero. The three-dimensional plots of the susceptible and infected individuals are drawn for two cases of endemic equilibrium and disease-free equilibriums. The results show the efficacy of the proposed stochastic IFD scheme.Öğe Computational study of a co-infection model of HIV/AIDS and hepatitis C virus models(Nature Portfolio, 2023) Dayan, Fazal; Ahmed, Nauman; Bariq, Abdul; Akgul, Ali; Jawaz, Muhammad; Rafiq, Muhammad; Raza, AliHepatitis C infection and HIV/AIDS contaminations are normal in certain areas of the world, and because of their geographic overlap, co-infection can't be precluded as the two illnesses have a similar transmission course. This current work presents a co-infection model of HIV/AIDS and Hepatitis C virus with fuzzy parameters. The application of fuzzy theory aids in tackling the issues associated with measuring uncertainty in the mathematical depiction of diseases. The fuzzy reproduction number and fuzzy equilibrium points have been determined in this context, focusing on a model applicable to a specific group defined by a triangular membership function. Furthermore, for the model, a fuzzy non-standard finite difference (NSFD) technique has been developed, and its convergence is examined within a fuzzy framework. The suggested model is numerically validated, confirming the dependability of the devised NSFD technique, which successfully retains all of the key properties of a continuous dynamical system.Öğe Construction and numerical analysis of a fuzzy non-standard computational method for the solution of an SEIQR model of COVID-19 dynamics(Amer Inst Mathematical Sciences-Aims, 2022) Dayan, Fazal; Ahmed, Nauman; Rafiq, Muhammad; Akgul, Ali; Raza, Ali; Ahmad, Muhammad Ozair; Jarad, FahdThis current work presents an SEIQR model with fuzzy parameters. The use of fuzzy theory helps us to solve the problems of quantifying uncertainty in the mathematical modeling of diseases. The fuzzy reproduction number and fuzzy equilibrium points have been derived focusing on a model in a specific group of people having a triangular membership function. Moreover, a fuzzy non-standard finite difference (FNSFD) method for the model is developed. The stability of the proposed method is discussed in a fuzzy sense. A numerical verification for the proposed model is presented. The developed FNSFD scheme is a reliable method and preserves all the essential features of a continuous dynamical system.Öğe Dynamical behavior of cancer cell densities in two dimensional domain by the representation theory of solitons(Elsevier, 2023) Iqbal, Muhammad Sajid; Ahmed, Nauman; Naeem, Rishi; Akgul, Ali; Razzaque, Abdul; Inc, Mustafa; Khurshid, HinaThis article analyzes the mathematical model which is described by the nonlinear partial differential equation governing the density of cancer cells at any position (x, y) in the open bounded subset of the plane at any time t. This is a two-dimensional model that describes the dynamics of cancer cells under radiotherapy and its comparison with the one in the absence of radiation effects. The 06-model expansion method has been used to find the exact solutions of the underlying problem. The simulation of obtained results have also been argued.(c) 2023 Elsevier B.V. All rights reserved.Öğe Dynamical study of groundwater systems using the new auxiliary equation method(Elsevier, 2024) Shahid, Naveed; Baber, Muhammad Zafarullah; Shaikh, Tahira Sumbal; Iqbal, Gulshan; Ahmed, Nauman; Akgul, Ali; De la Sen, ManuelIn this research, the exact solitary wave solutions to the non-linear problem of underground water levels are found. This study examines the transport of solutes in groundwater systems with variable density flow. The mathematical equation that is used to explain how groundwater moves through an aquifer is known as the groundwater flow equation and is used in hydrogeology. The auxiliary equation method is used to gain the analytical solutions to the underlying model equation. These solutions are gained in the form of hyperbolic, trigonometric, exponential, and rational function solutions. Mathematica generates two-dimensional and threedimensional graphs with suitable parameter values. The resulting solutions are also useful for researching wave interactions in several novel structures.Öğe Exact and solitary wave structure of the tumor cell proliferation with LQ model of three dimensional PDE by newly extended direct algebraic method(Aip Publishing, 2023) Ghazanfar, Sidra; Ahmed, Nauman; Ali, Syed Mansoor; Iqbal, Muhammad Sajid; Akgul, Ali; Shar, Muhammad Ali; Bariq, AbdulAn essential stage in the spread of cancer is the entry of malignant cells into the bloodstream. The fundamental mechanism of cancer cell intravasation is still completely unclear, despite substantial advancements in observing tumor cell mobility in vivo. By creating therapeutic methods in conjunction with control engineering or by using the models for simulations and treatment process evaluation, tumor growth models have established themselves as a crucial instrument for producing an engineering backdrop for cancer therapy. Because tumor growth is a highly complex process, mathematical modeling has been essential for describing it because a carefully crafted tumor growth model constantly describes the measurements and the physiological processes of the tumors. This article discusses the exact and solitary wave behavior of a tumor cell with a three-dimensional linear-quadratic model. Exact solutions have been discussed in detail using the newly extended direct algebraic method, which presents a variety of answers to this issue based on the conditions applied. This article also illustrates its graphical behavior with surface and contour plots of several solitons.
- «
- 1 (current)
- 2
- 3
- »