Yazar "Zuhair Jastaneyah" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Comparative analysis of hall current impact on MHD laminar surface tension gradient 3D flow of propylene glycol based tetra hybrid nanofluid with generalized fick's and fourier's perspective(Elsevier BV, 2025-03) Munawar Abbas; Shirin Shomurotova; Qasem Al-Mdallal; Ali Akgül; Zuhair Jastaneyah; Hakim AL GarallehExamine the significance of the Cattaneo-Christov flux model on the Marangoni convection 3D flow of tetra hybrid nanofluid combined with Hall current in the present study. When exposed to a fluctuating magnetic flux, it demonstrates electrical conductivity over a stretchy sheet. Using the Cattaneo-Christov double diffusion (CCDD) model, the problem is simulated. In this work, the CCDD model is used to analyze the mass and heat transmission tetra hybrid nanofluid. Basic Fourier's and Fick's laws are generalized by their application. A tetra hybrid nanofluid consisting of Molybdenum disulfide (Mos2), copper (Cu), Silicon dioxide (SiO2) and cobalt ferrite (CoFe2o4), propylene glycol (C3H8O2) as the base fluid is used. This model is essential for precisely predicting the behaviors of heat transfer in nanofluid flows since it takes thermal relaxation time into consideration. Its uses include optimizing heat exchanger performance, enhancing cooling systems in electronics, and better thermal management in microfluidic devices. The basic set of equations is resolved employing the numerical technique (bvp4c). The nanofluid, hybrid, trihybrid, and tetra hybrid nanofluid graphs are all compared. The stretching ratio parameter indicates rising trends in the flow distributions, although the opposite performance is observed for thermal and concentration distributions. Rate of heat and mass transmission improve of tetra hybrid, trihybrid, hybrid nanofluids as increase the values of Marangoni convection.Öğe Local thermal non-equilibrium effects on Marangoni convective flow of Casson fluid with elastic deformation: Perspective of Cattaneo-Christov flux model(Elsevier BV, 2025-05) Munawar Abbas; Ali Akgül; Talib K. Ibrahim; Qasem Al-Mdallal; Umid Turdialiyev; Hafiz Muhammad Ghazi; Zuhair Jastaneyah; Hakim AL GarallehThis work investigates the effects of local thermal non-equilibrium impacts on the chemical reactive flow of Casson fluid under elastic deformation over a sheet. The modified theory for mass and heat transport is the generalized CattaneoChristov theory, which takes into consideration the importance of relaxation times. Chemical reactors, heat exchangers, and geothermal systems are examples of engineering applications where precise temperature control between various materials or phases is required to maximize performance and efficiency. These applications depend on local thermal non-equilibrium conditions. In systems that use non-Newtonian fluids, as those found in polymer manufacturing, petroleum drilling, and food industry applications, this model can be applied to maximize heat and mass transmission. The CattaneoChristov heat flow theory provides a more accurate depiction of thermal behaviour in such fluids by accounting for thermal relaxation effects. In chemically reactive situations, these effects are crucial for increasing energy conversion, speeding up reaction rates, and creating efficient heat management systems. The relevant similarity variables are condensed, and then the model equation system is numerically resolved using the bvp4c method. The higher the interphase heat transfer value, the lower the thermal profile of the Casson fluid's solid and fluid phases.