Yazar "Zahran, Heba Y." seçeneğine göre listele
Listeleniyor 1 - 3 / 3
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe A New Iterative Predictor-Corrector Algorithm for Solving a System of Nuclear Magnetic Resonance Flow Equations of Fractional Order(Mdpi, 2022) Sultana, Mariam; Arshad, Uroosa; Khalid, Muhammad; Akgul, Ali; Albalawi, Wedad; Zahran, Heba Y.Nuclear magnetic resonance flow equations, also known as the Bloch system, are said to be at the heart of both magnetic resonance imaging (MRI) and nuclear magnetic resonance (NMR) spectroscopy. The main aim of this research was to solve fractional nuclear magnetic resonance flow equations (FNMRFEs) through a numerical approach that is very easy to handle. We present a New Iterative Predictor-Corrector Algorithm (NIPCA) based on the New Iterative Algorithm and Predictor-Corrector Algorithm to solve nonlinear nuclear magnetic resonance flow equations of fractional order involving Caputo derivatives. Graphical representation of the solutions with detailed error analysis shows the higher accuracy of the new technique. This New Iterative Predictor-Corrector Algorithm requires less computational time than previously published numerical methods. The results achieved in this article indicate that the algorithm is fit to use for other chaotic systems of fractional differential equations.Öğe Mathematical analysis about influence of Lorentz force and interfacial nano layers on nanofluids flow through orthogonal porous surfaces with injection of SWCNTs(Elsevier, 2022) Qureshi, Zubair Akbar; Bilal, Sardar; Khan, Unaiza; Akgul, Ali; Sultana, Mariam; Botmart, Thongchai; Zahran, Heba Y.The effort is presented to numerical examine the flow behavior of non-Newtonian fluid through orthogonal porous surfaces. A two-phase model of nanofluids simulations is considered which represents speculative features of materials that are obliged in biomechanics, lubricants for-mation, polymer solution, suspension, etc. The mechanism of interfacial nano layer at surfaces is deliberated through thermal conductivity. Numerical sculpting of non-Newtonian CNT fluid including the impact of chemical reaction, heat flux and mass transfer source is manifested in the form of partial differential equations. Similarity variables are capitalized to transmute governing modeled conservation laws into ordinary non-dimensional expressions. Assessment of flow attribut-ing profiles is disclosed by implementing the Runge-Kutta procedure in collaboration with the shooting method. The numerical stability with convergence rate is also discussed here. Graphical visualization and numerical data about surface drag coefficients and heat and mass transfer rates are also presented. The effect of expansion and contraction (-2 < a < 2) on boundary layer thick-ness is discussed in detail. The rate of heat transfer increases with the increase of boundary layer thickness in the presence of single-wall carbon nanotubes (SWCNT) is observed. An increase in heat transfer profile due to the presence of SWCNTs with the variation of thickness and radius of sustainable particles is perceived. The nano layer thickness is a significant effect related to the heat transfer rate.(c) 2022 THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Engineering, Alexandria University. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/ 4.0/).Öğe On analysis of magnetized viscous fluid flow in permeable channel with single wall carbon nano tubes dispersion by executing nano-layer approach(Elsevier, 2022) Shah, Imtiaz Ali; Bilal, Sardar; Akgul, Ali; Tekin, Merve Tastan; Botmart, Thongchai; Zahran, Heba Y.; Yahia, Ibrahim S.The prime motive of this pagination is to adumbrate attributes of water-based hybrid nanoliquid flow with dispersion of single wall carbon nanotubes. An innovative thermal conductance model containing the aspects of nanolayer formation along with shape and size of inserted particles is obliged. Flow transport mechanism is addressed mathematically in the form Navier Stokes equations with magnetization. In addition, heat and mass transport mechanism is manipulated by considering the impression of viscous dissipation and chemical reactions. Walls of channels are assumed to be porous in order to examine the phenomenon of suction and injection. Mathematical formulation of problem is represented in view of ODE's and simulated computationally by Keller Box scheme. Subsequently, Newton method is utilized to solve system of nonlinear equations. Results are revealed through graphs and tables showing behavior of associated momentum, temperature and concentration profile against involved parameters. Quantities of engineering interest like wall drag coefficient, heat and mass fluxes are computed. Credibility of work is shown by creating match with existing study and an excellent agreement is found. After thorough analysis it is determined that heat flux increases with induction of single wall carbon nanotubes in base liquid. It is also manifested that thermal conductance of base fluid enriches with increase in thickness of nano layer and radius of particles. In addition, positive trend in skin friction and heat flux coefficients is measured against elevation in nanoparticle volume fraction. Opposite behavior in velocity and temperature distributions against all flow variables near upper and lower walls of channel is depicteddue to provision suction and injection wall velocities. Due to consideration of viscous dissipation heat transfer rate with in the flow domain reduces. By increasing Reynold number concentration distribution diminishes due to dominant effect of inertial forces. Decline in momentum distribution against Hall current parameter is adhered. Uplift and decrement in temperature distribution is manifested against heat source and sink parameters respectively. (C) 2022 THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Engineering, Alexandria University.