Yazar "Yilmaz, Abdullah Asim" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe A Comprehensive Review of Cyber Security Vulnerabilities, Threats, Attacks, and Solutions(Mdpi, 2023) Aslan, Omer; Aktug, Semih Serkant; Ozkan-Okay, Merve; Yilmaz, Abdullah Asim; Akin, ErdalInternet usage has grown exponentially, with individuals and companies performing multiple daily transactions in cyberspace rather than in the real world. The coronavirus (COVID-19) pandemic has accelerated this process. As a result of the widespread usage of the digital environment, traditional crimes have also shifted to the digital space. Emerging technologies such as cloud computing, the Internet of Things (IoT), social media, wireless communication, and cryptocurrencies are raising security concerns in cyberspace. Recently, cyber criminals have started to use cyber attacks as a service to automate attacks and leverage their impact. Attackers exploit vulnerabilities that exist in hardware, software, and communication layers. Various types of cyber attacks include distributed denial of service (DDoS), phishing, man-in-the-middle, password, remote, privilege escalation, and malware. Due to new-generation attacks and evasion techniques, traditional protection systems such as firewalls, intrusion detection systems, antivirus software, access control lists, etc., are no longer effective in detecting these sophisticated attacks. Therefore, there is an urgent need to find innovative and more feasible solutions to prevent cyber attacks. The paper first extensively explains the main reasons for cyber attacks. Then, it reviews the most recent attacks, attack patterns, and detection techniques. Thirdly, the article discusses contemporary technical and nontechnical solutions for recognizing attacks in advance. Using trending technologies such as machine learning, deep learning, cloud platforms, big data, and blockchain can be a promising solution for current and future cyber attacks. These technological solutions may assist in detecting malware, intrusion detection, spam identification, DNS attack classification, fraud detection, recognizing hidden channels, and distinguishing advanced persistent threats. However, some promising solutions, especially machine learning and deep learning, are not resistant to evasion techniques, which must be considered when proposing solutions against intelligent cyber attacks.Öğe A New Malware Classification Framework Based on Deep Learning Algorithms(IEEE-Inst Electrical Electronics Engineers Inc, 2021) Aslan, Omer; Yilmaz, Abdullah AsimRecent technological developments in computer systems transfer human life from real to virtual environments. Covid-19 disease has accelerated this process. Cyber criminals' interest has shifted in a real to virtual life as well. This is because it is easier to commit a crime in cyberspace rather than regular life. Malicious software (malware) is unwanted software which is frequently used by cyber criminals to launch cyber-attacks. Malware variants are continuing to evolve by using advanced obfuscation and packing techniques. These concealing techniques make malware detection and classification significantly challenging. Novel methods which are quite different from traditional methods must be used to effectively combat with new malware variants. Traditional artificial intelligence (AI) specifically machine learning (ML) algorithms are no longer effective in detecting all new and complex malware variants. Deep learning (DL) approach which is quite different from traditional ML algorithms can be a promising solution to the problem of detecting all variants of malware. In this study, a novel deep-learning-based architecture is proposed which can classify malware variants based on a hybrid model. The main contribution of the study is to propose a new hybrid architecture which integrates two wide-ranging pre-trained network models in an optimized manner. This architecture consists of four main stages, namely: data acquisition, the design of deep neural network architecture, training of the proposed deep neural network architecture, and evaluation of the trained deep neural network. The proposed method tested on Malimg, Microsoft BIG 2015, and Malevis datasets. The experimental results show that the suggested method can effectively classify malware with high accuracy which outperforms the state of the art methods in the literature. When proposed method tested on Malimg dataset, 97.78% accuracy is obtained which is outperformed most of the ML-based malware detection method.