Yazar "Topu, Mustafa" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Genome-wide association analysis of coleoptile length and interaction with plant height in durum wheat(Wiley, 2024) Sesiz, Ugur; Alsaleh, Ahmad; Bektas, Harun; Topu, Mustafa; Ozkan, HakanGenotypes with longer coleoptiles can be sown in deep soil layers to reach the underground moisture needed for germination in dry areas. Developing new varieties with longer coleoptiles and shorter plant heights would be novel for wheat breeding and production. In this study, coleoptile lengths of a panel of durum wheat (Triticum turgidum ssp. durum) genotypes were determined, and 14,255 DArTseq (SNP and Silico-DArT) markers were used to identify coleoptile length-associated markers by genome-wide association study (GWAS). A wide genetic variation was accounted for both coleoptile length and plant height. The genetic relationships between coleoptile length and plant height were evaluated using plant height values from five different environments. Two environmentally stable MTAs were identified, one for coleoptile length (QCol.su.4BS) and one for plant height (QPh.su.4BS). These MTAs were located on the short arm of chromosome 4B, with LOD scores up to 12.00 and 17.00, respectively. A relatively high LD (r2 = 0.71) was accounted for between QCol.su.4BS and QPh.su.4BS. The LD block intervals of the MTAs overlapped with some genes with roles in plant growth and development. The functions of plausible candidate genes tell us that QCol.su.4BS may be controlling coleoptile length, whereas QPh.su.4BS may be regulating plant height. The combination of the two loci would be desirable. In conclusion, this study sheds light on the genetic control of coleoptile length and its relationship with plant height in durum wheat. Cultivars with longer coleoptiles perform better at emergence and seedling establishment.A diverse durum wheat panel was studied using GWAS analysis to evaluate coleoptile length and plant height.Two significant and stable genomic regions were identified for coleoptile length and plant height.These regions might enhance coleoptile length while reducing plant height.Öğe Next-Generation-Sequencing-Based Simple Sequence Repeat (SSR) Marker Development and Linkage Mapping in Lentil (Lens culinaris L.)(Mdpi, 2023) Topu, Mustafa; Sesiz, Ugur; Bektas, Harun; Toklu, Faruk; Ozkan, HakanSimple Summary Although lentil is not as popular as other legumes, it is a climate-resilient legume crop because of its high protein content, nitrogen fixation, and abiotic stress tolerance ability. Even though it can be grown on almost every continent and is distributed globally, the use of existing genetic diversity in marker-assisted selection is still limited. In this study, novel SSR markers needed in lentil were identified using a next-generation sequencing approach. In this study, we created a ready-to-use SSR library for genetic diversity studies and breeding and evaluated the effectiveness of the obtained SSR markers in a recombinant inbred line (RIL) population. Simple sequence repeats (SSRs) are highly versatile markers in genetic diversity analysis and plant breeding, making them widely applicable. They hold potential in lentil (Lens culinaris) breeding for genetic diversity analysis, marker-assisted selection (MAS), and linkage mapping. However, the availability and diversity of SSR markers in lentil is limited. We used next-generation sequencing (NGS) technology to develop SSR markers in lentil. NGS allowed us to identify regions of the lentil genome that contained SSRs. Illumina Hiseq-2000 sequencing of the lentil genotype Karacadag resulted in 1,727,734 sequence reads comprising more than 48,390 Mb, and contigs were mined for SSRs, resulting in the identification of a total of 8697 SSR motifs. Among these, dinucleotide repeats were the most abundant (53.38%), followed by trinucleotides (30.38%), hexanucleotides (6.96%), tetranucleotides (6.59%), and pentanucleotides (3.19%). The most frequent repeat in dinucleotides was the TC (21.80%), followed by the GA (17.60%). A total of 2000 primer pairs were designed from these motifs, and 458 SSR markers were validated following their amplified PCR products. A linkage map was constructed using these new SSRs with high linkage disequilibrium (209) and previously known SSRs (11). The highest number of SSR markers (43) was obtained in LG2, while the lowest number of SSR markers (19) was obtained in LG7. The longest linkage group (LG) was LG2 (86.84 cM), whereas the shortest linkage group was LG7 (53.46 cM). The average length between markers ranged from 1.86 cM in LG1 to 2.81 cM in LG7, and the map density was 2.16 cM. The developed SSRs and created linkage map may provide useful information and offer a new library for genetic diversity analyses, linkage mapping studies, and lentil breeding programs.