Yazar "Temiz, Selcuk" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Regeneration of Lithium-ion battery impedance using a novel machine learning framework and minimal empirical data(Elsevier, 2022) Temiz, Selcuk; Kurban, Hasan; Erol, Salim; Dalkilic, Mehmet M.The use of Electrochemical Impedance Spectroscopy on rechargeable Lithium-ion battery characterization is an extensively recognized non-destructive procedure for both in-situ and ex-situ analyses. In an impedance measurement for a rechargeable battery, the oscillating current with an accompanying phase angle is the response for a potential perturbation. The proper evaluation of phase angle as a crucial impedance parameter, provides critical understanding of the status of the battery. Although fast and simple, impedance data is difficult to interpret. Using a novel data-centric Machine Learning framework (co-modeling) we demonstrate how to impute experimental data quickly, precisely, and inexpensively that agrees with wholly experimentally generated data. In particular, we predict the phase angle with 99.9% accuracy by training the minimal empirical impedance data. This approach demonstrates a potentially burgeoning field of Machine Learning experimental data imputation and the consequence of faster diagnostic and study of batteries.Öğe Tailoring the structural properties and electronic structure of anatase, brookite and rutile phase TiO2 nanoparticles: DFTB calculations(Elsevier, 2020) Kurban, Hasan; Dalkilic, Mehmet; Temiz, Selcuk; Kurban, MustafaIn this study, we perform a theoretical investigation using the density functional tight-binding (DFTB) approach for the structural analysis and electronic structure of anatase, brookite and rutile phase TiO2 nanoparticles (NPs). Our results show that the number of Ti-O bonds is greater than that of O-O, while the number of Ti-Ti bonds is fewer. Thus, large amounts of O atoms prefer to connect to Ti atoms. The increase in the temperature of the NPs contributes to an increase in the interaction of Ti-O bonding, but a decrease in the O-O bonding. The segregation of Ti and O atoms shows that Ti atoms tend to co-locate at the center, while O atoms tend to reside on the surface. Increasing temperature causes a decrease of the bandgap from 3.59 to 2.62 eV for the brookite phase, which is much more energetically favorable compared to the bulk, while it could increase the bandgap from 3.15 to 3.61 eV for anatase phase. For three-phase TiO2 NPs, LUMO and Fermi levels decrease. The HOMO level of anatase phase NP decreases, but it increases for brookite and rutile phase TiO2 nanoparticles. An increase in the temperature contributes to the stabilization of anatase phase TiO2 NP due to a decrease in the HOMO energies.