Yazar "Skalicky, Milan" seçeneğine göre listele
Listeleniyor 1 - 11 / 11
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Adaptation Strategies to Improve the Resistance of Oilseed Crops to Heat Stress Under a Changing Climate: An Overview(Frontiers Media Sa, 2021) Ahmad, Muhammad; Waraich, Ejaz Ahmad; Skalicky, Milan; Hussain, Saddam; Zulfiqar, Usman; Anjum, Muhammad Zohaib; Habib Ur Rahman, MuhammadTemperature is one of the decisive environmental factors that is projected to increase by 1. 5 degrees C over the next two decades due to climate change that may affect various agronomic characteristics, such as biomass production, phenology and physiology, and yield-contributing traits in oilseed crops. Oilseed crops such as soybean, sunflower, canola, peanut, cottonseed, coconut, palm oil, sesame, safflower, olive etc., are widely grown. Specific importance is the vulnerability of oil synthesis in these crops against the rise in climatic temperature, threatening the stability of yield and quality. The natural defense system in these crops cannot withstand the harmful impacts of heat stress, thus causing a considerable loss in seed and oil yield. Therefore, a proper understanding of underlying mechanisms of genotype-environment interactions that could affect oil synthesis pathways is a prime requirement in developing stable cultivars. Heat stress tolerance is a complex quantitative trait controlled by many genes and is challenging to study and characterize. However, heat tolerance studies to date have pointed to several sophisticated mechanisms to deal with the stress of high temperatures, including hormonal signaling pathways for sensing heat stimuli and acquiring tolerance to heat stress, maintaining membrane integrity, production of heat shock proteins (HSPs), removal of reactive oxygen species (ROS), assembly of antioxidants, accumulation of compatible solutes, modified gene expression to enable changes, intelligent agricultural technologies, and several other agronomic techniques for thriving and surviving. Manipulation of multiple genes responsible for thermo-tolerance and exploring their high expressions greatly impacts their potential application using CRISPR/Cas genome editing and OMICS technology. This review highlights the latest outcomes on the response and tolerance to heat stress at the cellular, organelle, and whole plant levels describing numerous approaches applied to enhance thermos-tolerance in oilseed crops. We are attempting to critically analyze the scattered existing approaches to temperature tolerance used in oilseeds as a whole, work toward extending studies into the field, and provide researchers and related parties with useful information to streamline their breeding programs so that they can seek new avenues and develop guidelines that will greatly enhance ongoing efforts to establish heat stress tolerance in oilseeds.Öğe Consequences and Mitigation Strategies of Abiotic Stresses in Wheat (Triticum aestivum L.) under the Changing Climate(Mdpi, 2021) Hossain, Akbar; Skalicky, Milan; Brestic, Marian; Maitra, Sagar; Ashraful Alam, M.; Syed, M. Abu; Hossain, JamilWheat is one of the world's most commonly consumed cereal grains. During abiotic stresses, the physiological and biochemical alterations in the cells reduce growth and development of plants that ultimately decrease the yield of wheat. Therefore, novel approaches are needed for sustainable wheat production under the changing climate to ensure food and nutritional security of the ever-increasing population of the world. There are two ways to alleviate the adverse effects of abiotic stresses in sustainable wheat production. These are (i) development of abiotic stress tolerant wheat cultivars by molecular breeding, speed breeding, genetic engineering, and/or gene editing approaches such as clustered regularly interspaced short palindromic repeats (CRISPR)-Cas toolkit, and (ii) application of improved agronomic, nano-based agricultural technology, and other climate-smart agricultural technologies. The development of stress-tolerant wheat cultivars by mobilizing global biodiversity and using molecular breeding, speed breeding, genetic engineering, and/or gene editing approaches such as CRISPR-Cas toolkit is considered the most promising ways for sustainable wheat production in the changing climate in major wheat-growing regions of the world. This comprehensive review updates the adverse effects of major abiotic stresses and discusses the potentials of some novel approaches such as molecular breeding, biotechnology and genetic-engineering, speed breeding, nanotechnology, and improved agronomic practices for sustainable wheat production in the changing climate.Öğe CRISPR-Based Genome Editing Tools: Insights into Technological Breakthroughs and Future Challenges(Mdpi, 2021) Mushtaq, Muntazir; Ahmad Dar, Aejaz; Skalicky, Milan; Tyagi, Anshika; Bhagat, Nancy; Basu, Umer; Bhat, Basharat AhmadGenome-editing (GE) is having a tremendous influence around the globe in the life science community. Among its versatile uses, the desired modifications of genes, and more importantly the transgene (DNA)-free approach to develop genetically modified organism (GMO), are of special interest. The recent and rapid developments in genome-editing technology have given rise to hopes to achieve global food security in a sustainable manner. We here discuss recent developments in CRISPR-based genome-editing tools for crop improvement concerning adaptation, opportunities, and challenges. Some of the notable advances highlighted here include the development of transgene (DNA)-free genome plants, the availability of compatible nucleases, and the development of safe and effective CRISPR delivery vehicles for plant genome editing, multi-gene targeting and complex genome editing, base editing and prime editing to achieve more complex genetic engineering. Additionally, new avenues that facilitate fine-tuning plant gene regulation have also been addressed. In spite of the tremendous potential of CRISPR and other gene editing tools, major challenges remain. Some of the challenges are related to the practical advances required for the efficient delivery of CRISPR reagents and for precision genome editing, while others come from government policies and public acceptance. This review will therefore be helpful to gain insights into technological advances, its applications, and future challenges for crop improvement.Öğe Crucial Cell Signaling Compounds Crosstalk and Integrative Multi-Omics Techniques for Salinity Stress Tolerance in Plants(Frontiers Media Sa, 2021) Singhal, Rajesh K.; Saha, Debanjana; Skalicky, Milan; Mishra, Udit N.; Chauhan, Jyoti; Behera, Laxmi P.; Lenka, DeviduttaIn the era of rapid climate change, abiotic stresses are the primary cause for yield gap in major agricultural crops. Among them, salinity is considered a calamitous stress due to its global distribution and consequences. Salinity affects plant processes and growth by imposing osmotic stress and destroys ionic and redox signaling. It also affects phytohormone homeostasis, which leads to oxidative stress and eventually imbalances metabolic activity. In this situation, signaling compound crosstalk such as gasotransmitters [nitric oxide (NO), hydrogen sulfide (H2S), hydrogen peroxide (H2O2), calcium (Ca), reactive oxygen species (ROS)] and plant growth regulators (auxin, ethylene, abscisic acid, and salicylic acid) have a decisive role in regulating plant stress signaling and administer unfavorable circumstances including salinity stress. Moreover, recent significant progress in omics techniques (transcriptomics, genomics, proteomics, and metabolomics) have helped to reinforce the deep understanding of molecular insight in multiple stress tolerance. Currently, there is very little information on gasotransmitters and plant growth regulator crosstalk and inadequacy of information regarding the integration of multiomics technology during salinity stress. Therefore, there is an urgent need to understand the crucial cell signaling crosstalk mechanisms and integrative multiomics techniques to provide a more direct approach for salinity stress tolerance. To address the above-mentioned words, this review covers the common mechanisms of signaling compounds and role of different signaling crosstalk under salinity stress tolerance. Thereafter, we mention the integration of different omics technology and compile recent information with respect to salinity stress tolerance.Öğe Molecular cloning and characterization of heat-responsive LcOPR1, a gene encoding oxophytodienoic acid reductase in lentil(Cellular and Molecular Biology Association, 2024) Abu-Romman, Saeid; Mbarki, Sonia; Al-Momany, Bayan; Skalicky, Milan; Brestic, Marian; Alalawy, Adel I.; Pandey, SaurabhImproving crop plants using biotechnological implications is a promising and modern approach compared to traditional methods. High-temperature exposure to the reproductive stage induces flower abortion and declines grain filling performance, leading to smaller grain production and low yield in lentil and other legumes. Thus, cloning effective candidate genes and their implication in temperature stress tolerance in lentil (Lens culinaris Medik.) using biotechnological tools is highly demandable. The 12-oxophytodienoic acid reductases (OPRs) are flavin mononucleotide-dependent oxidoreductases with vital roles in plants. They are members of the old yellow enzyme (OYE) family. These enzymes are involved in the octadecanoid pathway, which contributes to jasmonic acid biosynthesis and is essential in plant stress responses. Lentil is one of the vital legume crops affected by the temperature fluctuations caused by global warming. Therefore, in this study, the LcOPR1 gene was successfully cloned and isolated from lentils using RT-PCR to evaluate its functional responses in lentil under heat stress. The bioinformatics analysis revealed that the full-length cDNA of LcOPR1 was 1303 bp, containing an 1134 bp open reading frames (ORFs), encoding 377 amino acids with a predicted molecular weight of 41.63 and a theoretical isoelectric point of 5.61. Bioinformatics analyses revealed that the deduced LcOPR1 possesses considerable homology with other plant 12-oxophytodienoic acid reductases (OPRs). Phylogenetic tree analysis showed that LcOPR1 has an evolutionary relationship with other OPRs in different plant species of subgroup I, containing enzymes that are not required for jasmonic acid biosynthesis. The expression analysis of LcOPR1 indicated that this gene is upregulated in response to the heat-stress condition and during recovery in lentil. This study finding might be helpful to plant breeders and biotechnologists in LcOPR1 engineering and/or plant breeding programs in revealing the biological functions of LcOPR1 in lentils and the possibility of enhancing heat stress tolerance by overexpressing LcOPR1 in lentil and other legume plants under high temperature. © 2024 Cellular and Molecular Biology Association. All rights reserved.Öğe Nutrients Supplementation through Organic Manures Influence the Growth of Weeds and Maize Productivity(Mdpi, 2020) Ghosh, Dibakar; Brahmachari, Koushik; Skalicky, Milan; Hossain, Akbar; Sarkar, Sukamal; Dinda, Nirmal Kumar; Das, AnupamDeclining rate of productivity and environmental sustainability is forcing growers to use organic manures as a source of nutrient supplement in maize farming. However, weed is a major constraint to maize production. A field study was carried out over two seasons to evaluate various integrated nutrient and weed management practices in hybrid maize. The treatment combinations comprised of supplementation of inorganic fertilizer (25% nitrogen) through bulky (Farmyard manure and vermicompost) and concentrated (Brassicaceous seed meal (BSM) and neem cake (NC)) organic manures and different mode of weed management practices like chemical (atrazine 1000 g ha(-1)) and integrated approach (atrazine 1000 g ha(-1) followed by mechanical weeding). Repeated supplementation of nitrogen through concentrated organic manures reduced the density and biomass accumulation of most dominant weed species, Anagalis arvensis by releasing allelochemicals into the soil. But organic manures had no significant impact on restricting the growth of bold seeded weeds like Vicia hirsuta and weed propagated through tubers i.e., Cyperus rotundus in maize. By restricting the weed growth and nutrient removal by most dominating weeds, application of BSM enhanced the growth and yield of maize crop. Repeated addition of organic manures (BSM) enhanced the maize grain yield by 19% over sole chemical fertilizer in the second year of study. Application of atrazine as pre-emergence (PRE) herbicide significantly reduced the density of A. arvensis, whereas integration of mechanical weeding following herbicide controlled those weeds which were not usually controlled with the application of atrazine. As a result, atrazine at PRE followed by mechanical weeding produced the highest maize grain yield 6.81 and 7.10 t/ha in the first year and second year of study, respectively.Öğe Salinity Stress in Wheat (Triticum aestivum L.) in the Changing Climate: Adaptation and Management Strategies(Frontiers Media Sa, 2021) EL Sabagh, Ayman; Islam, Mohammad Sohidul; Skalicky, Milan; Raza, Muhammad Ali; Singh, Kulvir; Hossain, Mohammad Anwar; Hossain, AkbarWheat constitutes pivotal position for ensuring food and nutritional security; however, rapidly rising soil and water salinity pose a serious threat to its production globally. Salinity stress negatively affects the growth and development of wheat leading to diminished grain yield and quality. Wheat plants utilize a range of physiological biochemical and molecular mechanisms to adapt under salinity stress at the cell, tissue as well as whole plant levels to optimize the growth, and yield by off-setting the adverse effects of saline environment. Recently, various adaptation and management strategies have been developed to reduce the deleterious effects of salinity stress to maximize the production and nutritional quality of wheat. This review emphasizes and synthesizes the deleterious effects of salinity stress on wheat yield and quality along with highlighting the adaptation and mitigation strategies for sustainable wheat production to ensure food security of skyrocketing population under changing climate.Öğe Supplementing Nitrogen in Combination with Rhizobium Inoculation and Soil Mulch in Peanut (Arachis hypogaea L.) Production System: Part I. Effects on Productivity, Soil Moisture, and Nutrient Dynamics(Mdpi, 2020) Mondal, Mousumi; Skalicky, Milan; Garai, Sourav; Hossain, Akbar; Sarkar, Sukamal; Banerjee, Hirak; Kundu, RajibPeanuts (Arachis hypogaea L.) are the world's fourth-most important source of edible oil and the third-most valuable source of high-quality vegetable protein; they also contain carbohydrates, fatty acids, vitamins, and minerals essential for good human nutrition. Peanuts area particularly valuable crop in tropical and subtropical regions. While the demand for peanuts is increasing globally, there is a significant gap in nitrogen supply and demand in peanut production systems. To alleviate this, nitrogen fertilizers are often applied indiscriminately; this practice leads to the deterioration of indigenous soil fertility and to a long-term decline in crop productivity. Considering these aspects of soil health, a field study was conducted over two consecutive winter (November-March) seasons in 2015-2016 and 2016-2017 at the research farm of the agricultural university Bidhan Chandra Krishi Viswavidyalaya in West Bengal, India. This study examined supplementing different levels of nitrogen fertilizer with rhizobium and soil mulch in an irrigated peanut crop. The effects of these management interventions were evaluated in terms of crop productivity, nutrient dynamics, soil moisture, and the soil microbial activity. Peanuts grown with the 100% recommended dose of nitrogen, which was applied with rhizobium and grown under polythene mulching, recorded the highest average pod yield (3.87 and 3.96 t ha(-1) in 2015-2016 and 2016-2017) and average kernel yield (2.88 and 2.99 t ha(-1)) in both growing seasons. This treatment also resulted in the greatest accumulation of nitrogen, phosphorous, and potassium by the peanut plants. In contrast, the maximum soil moisture distribution and the greatest total root zone moisture content were observed in the treatment with only rhizobium under the polythene mulch (i.e., no nitrogen was applied). The populations of soil bacteria and rhizobia were highest in the treatment where nitrogen fertilizer was applied to the crop at 75% of the recommended rate combined with rhizobium and under polythene mulch. After two cropping seasons, the peanut crop grown under polythene mulch with rhizobium and with nitrogen fertilizer applied at either the full recommended rate or 75% of this rate performed best in terms of crop productivity, soil nutrient dynamics, and soil moisture.Öğe Supplementing Nitrogen in Combination with Rhizobium Inoculation and Soil Mulch in Peanut (Arachis hypogaea L.) Production System: Part II. Effect on Phenology, Growth, Yield Attributes, Pod Quality, Profitability and Nitrogen Use Efficiency(Mdpi, 2020) Mondal, Mousumi; Skalicky, Milan; Garai, Sourav; Hossain, Akbar; Sarkar, Sukamal; Banerjee, Hirak; Kundu, RajibPeanut (Arachis hypogaea L.) is adorned as the one of the important sources of vegetable oil, protein, vitamins and several minerals, which could mitigate the nutritional gap worldwide. However, peanut cultivation in winter suffers from low temperature stress and knowledge lacuna regarding the optimum dose nitrogen. Therefore, the present investigations were carried out during the winter seasons 2015-2016 and 2016-2017 at the district seed farm of Bidhan Chandra Krishi Viswavidyalaya, an agricultural university in West Bengal, India (23 degrees 26' N, 88 degrees 22 ' E, elevation 12 m above mean sea level) to facilitate the comprehensive study of plant growth, productivity and profitability of an irrigated peanut crop under varied levels of nitrogen: with and without a rhizobium inoculants and with and without polythene mulch. Quality traits and nutrient dynamics were also itemized. Fertilizing with 100% of the recommended dose of nitrogen combined with rhizobium inoculant and polythene mulch significantly enhanced peanut plant growth, yield and yield-attributing traits, while resulting in the maximum fertilizer (i.e., nitrogen, phosphorus and potassium) uptake by different plant parts. The greatest number of root nodules occurred in the treatment that received 75% of the recommended dose of nitrogen with rhizobium supplementation under polythene mulch, while 50% of the recommended dose of nitrogen with no rhizobium resulted in maximum fertilizer nitrogen use efficiency. Applying the full recommended dose of nitrogen with the rhizobium inoculants and mulch resulted in maximum profitability in the peanut crop.Öğe Trehalose: A Key Player in Plant Growth Regulation and Tolerance to Abiotic Stresses(Springer, 2023) Hassan, Muhammad Umair; Nawaz, Muhammad; Shah, Adnan Noor; Raza, Ali; Barbanti, Lorenzo; Skalicky, Milan; Hashem, MohamedPlant abiotic stresses endanger crop production and food security to a growing degree under the present climate change scenario. This calls for effective measures to be deployed to increase the level of agricultural production to meet the needs of soaring world population. Application of osmo-protectants and soluble sugars were reported to counter abiotic stresses in many crop species. Trehalose (Tre) is one such non-reducing sugar found in bacteria and yeasts, where it serves as source of carbon, and in higher plants and animals, where it acts as osmo-protectant. Tre is involved in various physiological, biochemical and molecular mechanisms associated with plant growth, development and defense against drought, salinity, cold, heat, UV rays, nutrient deficiency and heavy metal stresses. It helps to maintain cellular integrity under stress by upgrading the antioxidant defense system. However, Tre amounts are lower than those needed to assure adequate plant stress tolerance. Interestingly, Tre supplementation up-regulates stress response genes and induces the accumulation of various osmolytes, including proline, glycine betaine and soluble sugars, which confer different kinds of stress tolerance. Alternatively, the development of transgenic plants with genes for Tre biosynthesis leads to appreciable tolerance against different stresses. However, some transgenic plants over-expressing Tre biosynthesis genes are adversely affected. This work aims to systematically review Tre's role as stress tolerance molecule and its crosstalk with other osmolytes under stress conditions, explaining mechanism of stress tolerance and pointing out areas for future research. It is evidenced that this compound owns a promising future as osmo-protectant in the coming years. The present review is intended as means to enrich the awareness on Tre potential benefits, in order to help the scientists as well as the practitioners to improve crop behavior and ultimate production under stress conditions.Öğe Yield Response, Nutritional Quality and Water Productivity of Tomato (Solanum lycopersicumL.) are Influenced by Drip Irrigation and Straw Mulch in the Coastal Saline Ecosystem of Ganges Delta, India(Mdpi, 2020) Samui, Indranil; Skalicky, Milan; Sarkar, Sukamal; Brahmachari, Koushik; Sau, Sayan; Ray, Krishnendu; Hossain, AkbarIn the coastal zone of the Ganges Delta, water shortages due to soil salinity limit the yield of dry season crops. To alleviate water shortage as a consequence of salinity stress in the coastal saline ecosystem, the effect of different water-saving (WS) and water-conserving options was assessed on growth, yield and water use of tomato; two field experiments were carried out at Gosaba, West Bengal, India in consecutive seasons during the winter of 2016-17 and 2017-18. The experiment was laid out in a randomized block design with five treatments viz., surface irrigation, surface irrigation + straw mulching, drip irrigation at 100% reference evapotranspiration (ET0), drip irrigation at 80% ET0, drip irrigation at 80% ET0+ straw mulching. Application of drip irrigation at 80% ET0+ straw mulching brought about significantly the highest fruit as well as the marketable yield of tomato (Solanum lycopersicumL.). The soil reaction (pH), post-harvest organic carbon, nitrogen, phosphorus and potassium (N, P and K) status and soil microbial population along with the biochemical quality parameters of tomato (juice pH, ascorbic acid, total soluble solids and sugar content of fruits) were significantly influenced by combined application of drip irrigation and straw mulching. Surface irrigation significantly increased the salinity level in surface and sub-surface soil layers while the least salinity development was observed in surface mulched plots receiving irrigation water through drip irrigation. The highest water productivity was also improved from drip irrigation at 80% ET0+ straw mulched plots irrespective of the year of experimentation. Such intervention also helped in reducing salinity stress for the tomato crop. Thus, straw mulching along with drip irrigation at 80% ET(0)can be recommended as the most suitable irrigation option for tomato crop in the study area as well as coastal saline regions of South Asia. Finally, it can be concluded that the judicious application of irrigation water not only increased growth, yield and quality tomatoes but also minimized the negative impact of soil salinity on tomatoes grown in the coastal saline ecosystem of Ganges Delta.