Yazar "Shoira Formanova" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Recent developments in the thermal radiative flow of dusty Ellis trihybrid nanofluid with activation energy using Hamilton-Crosser thermal conductivity model(Elsevier BV, 2025-05) Mostafa Mohamed Okasha; Munawar Abbas; Ali Akgül; Shoira Formanova; Talib K. Ibrahim; Murad Khan HassaniThis study scrutinizes the characteristics of activation energy on Darcy Forchheimer radiative flow of dusty Ellis trihybrid nanofluid over a Riga plate when dust and nanoparticles are present. The goal of the present work is to use the Hamilton-Crosser thermal conductivity model to scrutinize the heat transmission for the Darcy Forchheimer flow of dusty Ellis trihybrid nanofluid. The flow is impacted by heat source with the properties of Marangoni convection. The base fluid, propylene glycol (C3H8O2), is mixed with Ag, TiO2 and Al2O3 nanoparticles. The model is applicable to sophisticated heat transfer systems, including solar energy harvesting and electronic device cooling technologies. Additionally, it finds application in thermal management of industrial processes using nanofluids and aerospace engineering. Using the shooting technique, the numerical results of the governing equations are obtained (RKF-45th). The impacts on dimensionless physical quantities of interest of geometrical and physical properties relevant to this study are analysed using the required tables and figures. The results demonstrated that the Ellis fluid parameter raised the heat transmission, mass transmission rate, and velocity profiles. As the chemical reaction parameter upsurges, the concentration distributions decrease.Öğe The performance evolution of Xue and Yamada-Ota models for local thermal non equilibrium effects on 3D radiative casson trihybrid nanofluid(Springer Science and Business Media LLC, 2025-03-01) Ahmed M. Galal; Ali Akgül; Sahar Ahmed Idris; Shoira Formanova; Talib K. Ibrahim; Murad Khan Hassani; Abdullah A. Faqihi; Munawar Abbas; Ibrahim MahariqThe proposed study investigates the characteristics of Stefan blowing and activation energy on MHD Casson Diamond-[Formula: see text][Formula: see text]based trihybrid nanofluid over a sheet with LTNECs (local thermal non-equilibrium conditions) and permeable medium. The significance of Marangoni convection as well as heat generation are considered. In order to examine the properties of heat transmission in the absence of local thermal equilibrium conditions, this paper makes use of a simple mathematical model. Local thermal non-equilibrium situations typically result in two discrete and crucial temperature gradients in both the liquid and solid phases. In systems where material qualities and heat transfer efficiency are crucial, the utilization of Xue model and Yamada-Ota model and to assess the thermal conductivity of the nanofluid adds a comparison dimension and enables optimized design. The controlling partial differential equations are reduced to non-linear ordinary differential equations using an appropriate similarity transformation. The Bvp4c technique is used to resolve the resulting equations numerically. Applications in modern thermal management systems, especially those requiring precise heat transfer control (e.g., electronic cooling, medicinal devices, energy systems), will benefit greatly from this work. The model is especially applicable to processes where chemical reactions and internal heat sources are important, like in catalytic reactors and combustion systems, because it takes into account activation energy and heat generating effects. The findings indicate that when the value of the interphase heat transmission factor increases, the solid phase's temperature profile and liquid phase heat transfer rate drop.