Yazar "Shah, Imtiaz Ali" seçeneğine göre listele
Listeleniyor 1 - 7 / 7
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe A comprehensive mathematical structuring of magnetically effected Sutterby fluid flow immersed in dually stratified medium under boundary layer approximations over a linearly stretched surface(Elsevier, 2022) Bilal, Sardar; Shah, Imtiaz Ali; Akgul, Ali; Tekin, Merve Tastan; Botmart, Thongchai; Yousef, El SayedOn the implication of tension force, viscoelastic materials deform in accordance with viscous and elastic characterization. Dilute polymer solutions portray the examples of viscoelastic liquids and Sutterby model successfully represent it due to high degree polymerization distributions. In addition, polymer aqueous solutions behave as shear thinning and thickening liquids in response to infinite shear stress so Sutterby fluid is considered as best model to depict the features of liquids at high stress magnitude. Diverse utilities of diluted polymeric solutions are encountered in industrial, biological and technological practices, for instance, agricultural sprayers, cleansing products, clay coaters, polymerized melts and many more. So, this research communicates theoretical and computational thermal assessment of Sutterby fluid containing radiation aspects over a linearly moving sheet embedded in stratified medium which exposes the novelty of work. Moreover, the impacts of magnetic field and chemical reactions are also obliged. So, the principal objective pertains to adumbrate flow behavior of Sutterby liquid in the attendance of aforementioned physical parameters. Mathematical formulation in view of governing relations are changed into nondimensionalized form through transformation approach. Convergent and accurate solution is accessed through renowned numerical shooting procedure along with integrated Runge-Kutta scheme. The computed results of emerged parameters on velocity, concentration and thermal fields are revealed by means of snapshots. Magnitude of associated wall drag coefficient and reduced heat and mass fluxes are explained in graphical and tabular formats. The salient outcomes are as follows. Consequence of the proposed research investigation infers that augmenting power index momentum distribution decays whereas skin friction uplifts. Furthermore, it is inferred that concentration distribution amplifies against upsurging magnitude of solutal stratification parameter while opposite nature is noticed in case of temperature profile against associated stratification parameter. Additionally, it is concluded that escalating magnitude of radiation parameter tends to elevates the dimensionless temperature profile. Subsequently, rise in concentration profile against Schmidt number is observed whereas against Prandtl number temperature of fluid expressing declining aptitude. Also, declining response in momentum of fluid is manifested against Reynold and Deborah numbers.(c) 2022 THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Engineering, Alexandria University This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/ licenses/by-nc-nd/4.0/).Öğe Computational Analysis of the Morphological Aspects of Triadic Hybridized Magnetic Nanoparticles Suspended in Liquid Streamed in Coaxially Swirled Disks(Mdpi, 2022) Qureshi, Zubair Akbar; Bilal, Sardar; Shah, Imtiaz Ali; Akguel, Ali; Jarrar, Rabab; Shanak, Hussein; Asad, JihadCurrently, pagination clearly explains the increase in the thermophysical attributes of viscous hybrid nanofluid flow by varying morphological aspects of inducted triadic magnetic nanoparticles between two coaxially rotating disks. Copper metallic nanoparticles are inserted with three different types of metallic oxide nanoparticles: Al2O3, Ti2O, and Fe3O4. Single-phase simulation has been designed for the triadic hybrid nanofluids flow. The achieved expressions are transmuted by the obliging transformation technique because of dimensionless ordinary differential equations (ODEs). Runge-Kutta in collaboration with shooting procedure are implemented to achieve the solution of ODEs. The consequences of pertinent variables on associated distributions and related quantities of physical interest are elaborated in detail. It is inferred from the analysis that Cu-Al2O3 metallic type hybrid nanofluids flow shows significant results as compared with the other hybrid nanoparticles. The injection phenomenon on hybrid nanofluids gives remarkable results regarding shear stress and heat flux with the induction of hybridized metallic nanoparticles. Shape and size factors have also been applied to physical quantities. The morphology of any hybrid nanoparticles is directly proportional to the thermal conductance of nanofluids. Peclet number has a significant effect on the temperature profile.Öğe Finite difference simulations for magnetically effected swirling flow of Newtonian liquid induced by porous disk with inclusion of thermophoretic particles diffusion(Elsevier, 2022) Bilal, S.; Shah, Imtiaz Ali; Akgul, Ali; Nisar, Kottakkaran Sooppy; Khan, Ilyas; Khashan, M. Motawi; Yahia, I. S.Heat and mass transfer analysis of viscous liquid flow generated by rotation of disk has generated prodigious interest due to promising utilizations in numerous processes such as thermal energy generation systems, turbine rotators, geothermal energy preservations, chemical processing, medicinal instrumentations, computing devices and so forth. In view of such extraordinary utilizations in numerous engineering procedures existent exertion is excogitated to disclose flowing phenomenon over rotating disk. To raise the importance of current analysis influential physical aspects like magnetic field, permeability, Dufour and Soret diffusion phenomenon are also incorporated. Subsequently, flow field distributions are analyzed for suction and injection cases. Modelling is structured via PDE's by obliging constitutive conservation laws. Boundary layer approach is executed to reduce complexity of attained partial differential system. Transformations developed by Karman are implemented to convert developed differential framework into ODE's. Implicitly finite differenced technique known as Keller Box is engaged to find solution of coupled intricate high order ordinary differential equations. Influence of flow controlling parameters on associated distributions are revealed through graphical and tabular representations. The related quantities of engineering interest like coefficients of wall drag force, along radial and tangential directions are also computed. Credibility of presently computed results is established by constructing comparison with previously published literature. It is inferred that magnetic strength parameter enhances tangential and radial components of velocity whereas contrary trend is depicted in axially directed velocity. In addition, temperature and momentum distributions show up surging attribute versus magnetic field parameter. All associated profiles have exhibited decrementing aspects against suction parameter. It is also revealed that increment in Soret tends to produce depreciation in temperature profile whereas concentration distribution is enhanced. (C) 2021 THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Engineering, Alexandria University.Öğe Heat and Flow Control in Cavity with Cold Circular Cylinder Placed in Non-Newtonian Fluid by Performing Finite Element Simulations(Mdpi, 2022) Bilal, Sardar; Khan, Noor Zeb; Shah, Imtiaz Ali; Awrejcewicz, Jan; Akgul, Ali; Riaz, Muhammad BilalA study on strategies regarding advancement in heat transfer characteristics in two-dimensional closed domains by placing cold cylinders is conducted. This effort is undertaken due to the fact that active and passive control in heat transmission is connected with provision of temperature differences at different locations of enclosures. Based on the experiments, researchers have concluded that placement of cold cylinder in non-uniformly distributed heat in a cavity is the most effective technique to enrich heat transfer rate, along with reducing the the waste of extra heat generation in processes such as polymer and aero dynamical extrusion, glass cooling, refrigeration, heating and cooling systems. Thus, the prime goal of this work is to outline heat and flow characteristics of non-linear fluid occupied in a square enclosure with adjustment of the cold cylinder. Heat transfer attributes are incorporated by accounting buoyancy forces and forming coupling of molecular diffusion of fluid within the flow domain. Formulation of the problem in dimensionless form is attained by encapsulating the aspects of natural convection in view of principal partial differential equations. Parametric study for governing expressions is computed numerically with the finite element method based on COMSOL Multiphysics version 5.6. Quadric interpolating functions are used to obtain information about velocity and temperature on nodes in elements. Hybrid meshing is manifested for discretization of the domain into rectangular and triangular elements. For the optimized variation in flow structures, prospective parameters are varied from 0.5 <= n <= 1.5, 5 <= Pr <= 35 and 10(2) <= Ra <= 10(6). The achieved results are projected graphically through streamlines, isotherms, and local and average Nusselt numbers. Tabular data for kinetic energy and wall heat flux are also calculated. It is inferred through the analysis that, with uplift in the Rayleigh number ( Ra) elevation in the magnitude of kinetic energy and convective heat transfer arises, whereas the reverse pattern is depicted versus the power-law index ( n)Öğe Numerical Study of Natural Convection of Power Law Fluid in a Square Cavity Fitted with a Uniformly Heated T-Fin(Mdpi, 2022) Bilal, Sardar; Khan, Noor Zeb; Shah, Imtiaz Ali; Awrejcewicz, Jan; Akgul, Ali; Riaz, Muhammad BilalFlow of a liquid in an enclosure with heat transfer has drawn special focus of researchers due to the abundant thermal engineering applications. So, the aim of present communication is to explore thermal characteristics of natural convective power-law liquid flow in a square enclosure rooted with a T-shaped fin. The formulation of the problem is executed in the form of partial differential expressions by incorporating the rheological relation of the power-law fluid. The lower wall of the enclosure along with the fin is uniformly heated and vertical walls are prescribed with cold temperature. For effective heat transfer within the cavity the upper boundary is considered thermally insulated. A finite element based commercial software known as COMSOL is used for simulations and discretization of differential equations and is executed incorporating a weak formulation. Domain discretization is performed by dividing it into triangular and rectangular elements at different refinement levels. A grid independence test is accomplished for quantities of engineering interest like local and average Nusselt numbers to attain accuracy and validity in results. Variation in the momentum and thermal distributions against pertinent parameters is analyzed through stream lines and isothermal contour plots. Measurement of the heat flux coefficient along with the calculation of kinetic energy against involved parameters is displayed through graphs and tables. After the comprehensive overview of attained results it is deduced that kinetic energy elevates against the upsurging magnitude of the Rayleigh number, whereas contrary behavior is encapsulated versus power-law index n. Elevation in the Nusselt number for the shear thinning case i.e., n=0.5 adheres as compared to Newtonian i.e., n=1 and shear thickening cases i.e., n=1.5. It is perceived that by the upsurging power-law index viscosity augmentations and circulation zones increases. Heat is transferred quickly against Rayleigh number (Ra) due to production of temperature difference in flow domain.Öğe On analysis of magnetized viscous fluid flow in permeable channel with single wall carbon nano tubes dispersion by executing nano-layer approach(Elsevier, 2022) Shah, Imtiaz Ali; Bilal, Sardar; Akgul, Ali; Tekin, Merve Tastan; Botmart, Thongchai; Zahran, Heba Y.; Yahia, Ibrahim S.The prime motive of this pagination is to adumbrate attributes of water-based hybrid nanoliquid flow with dispersion of single wall carbon nanotubes. An innovative thermal conductance model containing the aspects of nanolayer formation along with shape and size of inserted particles is obliged. Flow transport mechanism is addressed mathematically in the form Navier Stokes equations with magnetization. In addition, heat and mass transport mechanism is manipulated by considering the impression of viscous dissipation and chemical reactions. Walls of channels are assumed to be porous in order to examine the phenomenon of suction and injection. Mathematical formulation of problem is represented in view of ODE's and simulated computationally by Keller Box scheme. Subsequently, Newton method is utilized to solve system of nonlinear equations. Results are revealed through graphs and tables showing behavior of associated momentum, temperature and concentration profile against involved parameters. Quantities of engineering interest like wall drag coefficient, heat and mass fluxes are computed. Credibility of work is shown by creating match with existing study and an excellent agreement is found. After thorough analysis it is determined that heat flux increases with induction of single wall carbon nanotubes in base liquid. It is also manifested that thermal conductance of base fluid enriches with increase in thickness of nano layer and radius of particles. In addition, positive trend in skin friction and heat flux coefficients is measured against elevation in nanoparticle volume fraction. Opposite behavior in velocity and temperature distributions against all flow variables near upper and lower walls of channel is depicteddue to provision suction and injection wall velocities. Due to consideration of viscous dissipation heat transfer rate with in the flow domain reduces. By increasing Reynold number concentration distribution diminishes due to dominant effect of inertial forces. Decline in momentum distribution against Hall current parameter is adhered. Uplift and decrement in temperature distribution is manifested against heat source and sink parameters respectively. (C) 2022 THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Engineering, Alexandria University.Öğe Significance of cold cylinder in heat control in power law fluid enclosed in isosceles triangular cavity generated by natural convection: A computational approach(Elsevier, 2022) Shah, Imtiaz Ali; Bilal, Sardar; Akgul, Ali; Omri, Mohamed; Bouslimi, Jamel; Khan, Noor ZebThe selection of appropriate geometrical characteristics of enclosure has salient influence on performance of different thermal engineering processes and devices like microelectronics, heat exchangers, power engines, boilers, solar collectors, nuclear reactors and so forth. Specifically, the triangular cavity of different aspect ratios are used to obtain multi-objective optimization and gaining excellence in thermal performance of micro channels. Subsequently, the installation of cold cylinder in a triangular enclosure are extensively used to remove high energy dissipation in micro heat sinks and heat exchangers. So, the purpose of current effort is to probe thermal characteristics of power-law liquid describing features of shear thinning and thickening materials containing applications in lubrication and polymer industry. Heat transfer is generated by the consideration of natural convection process generated due to consideration of cold walls and cylinder with provision of non-uniform heating at base wall. No-slip velocity conditions are supposed at all walls of isosceles triangle cavity. Solution of attained differential system is simulated by capitalizing finite element based COMSOL Multiphysics software (Version 5.6). Domain discretization by distributing into triangular and rectangular elements is conceded and equations at element levels are discretized by executing weak formulation. The validation of adopted numerical procedure is established by making agreement with formerly available works in both statistical and graphical approaches. Streamlines and isotherms are plotted and discussed against various parametric regimes. This study reveals noticeable influence of involved physical parameters on average and local heat flux coefficients, kinetic energy and cutlines against involved physical parameters are also evaluated. It is inferred thorough the analysis that with uplift in Rayleigh number (Ra) produces enrichment in kinetic energy and local heat transfer coefficients whereas reverse pattern is depicted against power-law index.(n): (c) 2022 THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Engineering, Alexandria University This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/ licenses/by-nc-nd/4.0/).