Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "RASOOL, MEGIR MOHAMMED RASOOL" seçeneğine göre listele

Listeleniyor 1 - 1 / 1
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Yükleniyor...
    Küçük Resim
    Öğe
    FACE RECOGNITION USING LBP, nLBP and αLBP ALGORITHMS
    (SİİRT ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ, 2019) RASOOL, MEGIR MOHAMMED RASOOL; TİRYAKİ, VOLKAN MÜJDAT
    Face recognition is of great interest because it is one of the most important image processing applications. Although the success rates of the studies in the literature are high, the performance in out-ofcontrol situations is still not better than human. There are many challenges to design an accurate and robust face recognition system, especially in non-restricted environments. In this thesis classical local binary pattern (LBP), neighborliness local binary pattern (nLBP) and αLBP were used for a face recognition problem. nLBP is formed according to the relationship between the neighbors around each pixel. nLBP has a distance parameter which specifies the distance between consecutive neighbors to be compared. Different patterns are obtained for different d parameter values. αLBP operator calculates the value of each pixel according to an angle value. Angle values can be α = 0, 45, 90 and 135 degrees. The ORL face database was used to test the proposed approaches. nLBP, αLBP and classical LBP features were extracted from face images and classified using knearest neighbor (kNN) and artificial neural network (ANN). 98.25% recognition rate was obtained using kNN with nLBP. A recognition rate of 88.50% was obtained with αLBP using ANN. The recognition rate of 83.50% was obtained with classical LBP. The proposed nLBP and αLBP approaches were found to be more successful than the classical LBP method. In the literature, the success rates obtained in the studies performed on the same ORL face database were compared with the success rates of the proposed approaches in this thesis study. As a result, the proposed LBP-based approaches achieved significant success in face recognition.

| Siirt Üniversitesi | Kütüphane | Açık Bilim Politikası | Açık Erişim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Siirt Üniversitesi Kütüphane ve Dokümantasyon Daire Başkanlığı, Siirt, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim