Yazar "Pande, Chaitanya Baliram" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe A novel metaheuristic optimization and soft computing techniques for improved hydrological drought forecasting(Pergamon-Elsevier Science Ltd, 2024) Katipoglu, Okan Mert; Ertugay, Nese; Elshaboury, Nehal; Akturk, Gaye; Kartal, Veysi; Pande, Chaitanya BaliramDrought is one of the costliest natural disasters worldwide and weakens countries economically by causing negative impacts on hydropower and agricultural production. Therefore, it is necessary to create drought risk management plans by monitoring and predicting droughts. Various drought indicators have been developed to monitor droughts. This study aims to forecast Streamflow Drought Index (SDI) values with various novel metaheuristic optimization-based Artificial Neural Network (ANN) and deep learning models to predict 1-month lead-time hydrological droughts on 1, 3, and 12-month time scales in the Konya closed basin, one of the driest basins in Turkey. To achieve this goal, the ANN model was integrated with the Firefly Algorithm (FFA), Genetic Algorithm (GA), and Particle Swarm Optimization (PSO) techniques and compared against long shortterm memory (LSTM) networks. While establishing the SDI prediction model, lag values exceeding the 95% confidence intervals in the partial autocorrelation function graphs were used. Model performance was evaluated according to scatter matrix, radar, time series, bee swarm graphs, and statistical performance metrics. As a result of the analysis, the PSO-ANN hybrid model with (R2:0.468-0.931) at station 1611 and the FFA-ANN hybrid model with (R2:0.443-0.916) at station 1612 generally have the highest accuracy.Öğe Sediment load forecasting from a biomimetic optimization perspective: Firefly and Artificial Bee Colony algorithms empowered neural network modeling in Çoruh River(Springer, 2024) Katipoglu, Okan Mert; Kartal, Veysi; Pande, Chaitanya BaliramThe service life of downstream dams, river hydraulics, waterworks construction, and reservoir management is significantly affected by the amount of sediment load (SL). This study combined models such as the artificial neural network (ANN) algorithm with the Firefly algorithm (FA) and Artificial Bee Colony (ABC) optimization techniques for the estimation of monthly SL values in the & Ccedil;oruh River in Northeastern Turkey. The estimation of SL values was achieved using inputs of previous SL and streamflow values provided to the models. Various statistical metrics were used to evaluate the accuracy of the established hybrid and stand-alone models. The hybrid model is a novel approach for estimating sediment load based on various input variables. The results of the analysis determined that the ABC-ANN hybrid approach outperformed others in SL estimation. In this study, two combinations, M1 and M2, with different input variables, were used to assess the model's accuracy, and the best-performing model for monthly SL estimation was identified. Two scenarios, Q(t) and Q(t - 1), were coupled with the ABC-ANN algorithm, resulting in a highly effective hybrid approach with the best accuracy results (R2 = 0.90, RMSE = 1406.730, MAE = 769.545, MAPE = 5.861, MBE = - 251.090, Bias Factor = - 4.457, and KGE = 0.737) compared to other models. Furthermore, the utilization of FA and ABC optimization techniques facilitated the optimization of the ANN model parameters. The significant results demonstrated that the optimization and hybrid techniques provided the most effective outcomes in forecasting SL for both combination scenarios. As a result, the prediction outputs achieved higher accuracy than those of a stand-alone ANN model. The findings of this study can provide essential resources to various managers and policymakers for the management of water resources.