Yazar "Oduncu, M. Kadir" seçeneğine göre listele
Listeleniyor 1 - 3 / 3
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Comparative solid phase extraction study on the U(VI) preconcentration by using immobilized thermotolerant Bacillus vallismortis and Bacillus mojavensis(Springer, 2018) Ozdemir, Sadin; Oduncu, M. Kadir; Kilinc, Ersin; Soylak, MustafaBacillus vallismortis and Bacillus mojavensis were loaded onto Amberlite XAD-4 resin and used for solid phase extraction (SPE) of uranium(VI). A quick and simple UV-Vis spectrophotometric method was used to determine U(VI) ion. The best experimental conditions were determined as being a pH of 5.0; a sample flow rate of 2.0 mL min(-1); 200.0 mg of biosorbent; 800 mg of Amberlite XAD-4, and 5.0 mL of 1 mol L-1 HCl as desorption solution for both immobilized bacteria. The preconcentration factors were achieved as 80 for both solid phase extractor. The developed methods were validated by applying to reference water and tea samples.Öğe Resistance, bioaccumulation and solid phase extraction of uranium (VI) by Bacillus vallismortis and its UV-vis spectrophotometric determination(Elsevier Sci Ltd, 2017) Ozdemir, Sadin; Oduncu, M. Kadir; Kilinc, Ersin; Soylak, MustafaBioaccumulation, resistance and preconcentration of uranium(VI) by thermotolerant Bacillus vallismortis were investigated in details. The minimum inhibition concentration of (MIC) value of U(VI) was found as 85 mg/L and 15 mg/L in liquid and solid medium, respectively. Furthermore, the effect of various U(VI) concentrations on the growth of bacteria and bioaccumulation on B. vallismortis was examined in the liquid culture media. The growth was not significantly affected in the presence of 1.0, 2.5 and 5.0 mg/L U(VI) up to 72 h. The highest bioaccumulation value at 1 mg/L U(VI) concentration was detected at the 72nd hour (10 mg/g metal/dry bacteria), while the maximum bioaccumulation value at 5 mg/L U(VI) concentration was determined at the 48th hour (50 mg metal/dry bacteria). In addition to these, various concentration of U(VI) on alpha-amylase production was studied. The alpha-amylase activities at 0, 1, 2.5 and 5 mg/L U(VI) were found as 3313.2, 3845.2, 3687.1 and 3060.8 U/mg, respectively at 48th. Besides, uranium (VI) ions were preconcentrated with immobilized B. vallismortis onto multiwalled carbon nanotube (MWCNT) and were determined by UV-vis spectrophotometry. The surface macro structure and functionalities of B. vallismortis immobilized onto multiwalled carbon nanotube with and without U(VI) were examined by FT-IR and SEM. The optimum pH and flow rate for the biosorption of U(VI) were 4.0-5.0 and 1.0 mL/min, respectively. The quantitative elution occurred with 5.0 mL of 1 mol/L HCI. The loading capacity of immobilized B. vallismortis was determined as 23.6 mg/g. The certified reference sample was employed for the validation of developed solid phase extraction method. The new validated method was applied to the determination of U(VI) in water samples from Van Lake-Turkey. (C) 2017 Elsevier Ltd. All rights reserved.Öğe Tolerance and bioaccumulation of U(VI) by Bacillus mojavensis and its solid phase preconcentration by Bacillus mojavensis immobilized multiwalled carbon nanotube(Academic Press Ltd- Elsevier Science Ltd, 2017) Ozdemir, Sadin; Oduncu, M. Kadir; Kilinc, Ersin; Soylak, MustafaIn this study, uranium(VI) tolerance and bioaccumulation were investigated by using thermo-tolerant Bacillus mojavensis. The level of U(VI) was measured by UV-VIS spectrophotometry. The minimum inhibition concentration (MIC) value of U(VI) was experimented. Bacterial growth was not affected in the presence of 1.0 and 2.5 mg/L U(VI) at 36 h and the growth was partially affected in the presence of 5 mg/L U(VI) at 24 h. What was obtained from this study is that there was diversity in the various periods of the growth phases of metal bioaccumulation capacity, which was shown by B. mojavensis. The maximum bioaccumulation capacities were found to be 12.8, 22.7, and 48.2 mg/g dried bacteria, at 24th hours at concentration of 1.0, 2.5 and 5 mg/L U(VI), respectively. In addition to these, U(VI) has been pre-concentrated on B. mojavensis immobilized MWCNT. Several factors such as pH, flow rate of solution, amount of biosorbent and support materials, eluent type, concentration and volume, the matrix interference effect on retention have been studied, and extraction conditions were optimized. Preconcentration factor was achieved as 60. Under the optimized conditions, the limit of detection (LOD) and quantification (LOQ) were calculated as 0.74 and 2.47 mu g/L. The biosorption capacity of immobilized B. mojavensis was calculated for U(VI) as 25.8 mg/g. The results demonstrated that the immobilized biosorbent column could be reused at least 30 cycles of biosorption and desorption with the higher than 95% recovery. FT-IR and SEM analysis were performed to understand the surface properties of B. mojavensis. (C) 2016 Elsevier Ltd. All rights reserved.