Yazar "Nawaz, Muhammad" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Putting Biochar in Action: A Black Gold for Efficient Mitigation of Salinity Stress in Plants. Review and Future Directions(Amer Chemical Soc, 2024) Gao, Zhan-Wu; Ding, Jianjun; Ali, Basharat; Nawaz, Muhammad; Hassan, Muhammad Umair; Ali, Abid; Rasheed, AdnanSoil salinization is a serious concern across the globe that is negatively affecting crop productivity. Recently, biochar received attention for mitigating the adverse impacts of salinity. Salinity stress induces osmotic, ionic, and oxidative damages that disturb physiological and biochemical functioning and nutrient and water uptake, leading to a reduction in plant growth and development. Biochar maintains the plant function by increasing nutrient and water uptake and reducing electrolyte leakage and lipid peroxidation. Biochar also protects the photosynthetic apparatus and improves antioxidant activity, gene expression, and synthesis of protein osmolytes and hormones that counter the toxic effect of salinity. Additionally, biochar also improves soil organic matter, microbial and enzymatic activities, and nutrient and water uptake and reduces the accumulation of toxic ions (Na+ and Cl), mitigating the toxic effects of salinity on plants. Thus, it is interesting to understand the role of biochar against salinity, and in the present Review we have discussed the various mechanisms through which biochar can mitigate the adverse impacts of salinity. We have also identified the various research gaps that must be addressed in future study programs. Thus, we believe that this work will provide new suggestions on the use of biochar to mitigate salinity stress.Öğe Trehalose: A Key Player in Plant Growth Regulation and Tolerance to Abiotic Stresses(Springer, 2023) Hassan, Muhammad Umair; Nawaz, Muhammad; Shah, Adnan Noor; Raza, Ali; Barbanti, Lorenzo; Skalicky, Milan; Hashem, MohamedPlant abiotic stresses endanger crop production and food security to a growing degree under the present climate change scenario. This calls for effective measures to be deployed to increase the level of agricultural production to meet the needs of soaring world population. Application of osmo-protectants and soluble sugars were reported to counter abiotic stresses in many crop species. Trehalose (Tre) is one such non-reducing sugar found in bacteria and yeasts, where it serves as source of carbon, and in higher plants and animals, where it acts as osmo-protectant. Tre is involved in various physiological, biochemical and molecular mechanisms associated with plant growth, development and defense against drought, salinity, cold, heat, UV rays, nutrient deficiency and heavy metal stresses. It helps to maintain cellular integrity under stress by upgrading the antioxidant defense system. However, Tre amounts are lower than those needed to assure adequate plant stress tolerance. Interestingly, Tre supplementation up-regulates stress response genes and induces the accumulation of various osmolytes, including proline, glycine betaine and soluble sugars, which confer different kinds of stress tolerance. Alternatively, the development of transgenic plants with genes for Tre biosynthesis leads to appreciable tolerance against different stresses. However, some transgenic plants over-expressing Tre biosynthesis genes are adversely affected. This work aims to systematically review Tre's role as stress tolerance molecule and its crosstalk with other osmolytes under stress conditions, explaining mechanism of stress tolerance and pointing out areas for future research. It is evidenced that this compound owns a promising future as osmo-protectant in the coming years. The present review is intended as means to enrich the awareness on Tre potential benefits, in order to help the scientists as well as the practitioners to improve crop behavior and ultimate production under stress conditions.